\(\times\)3y
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

\(5^{x+2}+5^{x+3}=750\)

\(5^x.5^2+5^x.5^3=750\)

\(5^x.25+5^x\cdot125=750\)

\(5^x.\left(25+125\right)=750\)

\(5^x.150=750\)

\(5^x=750:150\)

\(5^x=5\)

\(5^x=5^1\)

\(\Rightarrow x=1\)

19 tháng 7 2017

a) \(5^{x+2}\)\(5^{x+3}\)=625

\(5^x\)\(2^x\)\(5^x\) . \(3^x\)=625

\(5^x\). (\(2^x\)\(3^x\) ) =625

\(5^x\)\(5^x\) =625

\(25^x\) =625

\(25^x\)\(25^2\)

vậy x=2

hình như câu a bn ghi nhầm 625 thành 750

b)

Ta có :

\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)

Lại có :

\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

Tương tự, ta có 

\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)

\(\Rightarrow1< M< 2\)

\(\Rightarrow M\)không là số tự nhiên

k cho mình nha nha nha

27 tháng 3 2020

1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath

24 tháng 6 2017

Bài 1:

a, \(\dfrac{x+5}{x}=\dfrac{4}{3}\)

\(\Rightarrow3x+15=4x\\ \Rightarrow4x-3x=15\\ \Rightarrow x=15\)

b, \(\dfrac{x-20}{x-10}=\dfrac{x+40}{x+70}\)

\(\Rightarrow\left(x-20\right).\left(x+70\right)=\left(x+40\right)\left(x-10\right)\)

\(\Rightarrow x^2+70x-20x-1400=x^2-10x+40x-400\)

\(\Rightarrow x^2-x^2+70x-20x+10x-40x=-400+1400\)

\(\Rightarrow20x=1000\Rightarrow x=50\)

c, \(4^x=\dfrac{1.2.3.....31}{4.6.8.....64}\)

\(\Rightarrow4^x=\dfrac{1}{2.2.2.2.....2.2.64}\) (có 30 số 2)

\(\Rightarrow4^x=\dfrac{1}{2^{30}.4^3}\Rightarrow4^x=\dfrac{1}{4^{15}.4^3}\)

\(\Rightarrow4^x=\dfrac{1}{4^{18}}\)

\(\Rightarrow4^x=4^{-18}\)

\(4\ne-1;4\ne0;4\ne1\) nên \(x=-18\)

Chúc bạn học tốt!!!

24 tháng 6 2017

a , \(\dfrac{x+5}{x}=\dfrac{4}{3}\Leftrightarrow3\left(x+5\right)=4x\)

<=> 3x+15=4x

<=> x= 15

b , \(\dfrac{x-20}{x-10}=\dfrac{x+40}{x+70}\)

<=> \(\dfrac{x-10}{x-10}-\dfrac{10}{x-10}=\dfrac{x+70}{x+70}-\dfrac{30}{x+70}\)

<=> \(1-\dfrac{10}{x-10}=1-\dfrac{30}{x+70}\)

<=> \(\dfrac{10}{x-10}=\dfrac{30}{x+70}\Leftrightarrow\dfrac{1}{x-10}=\dfrac{3}{x+70}\)

<=> (x+70)=3(x-10)

<=> x+70 = 3x-30

<=> 100=2x

<=> x= 50