K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2021

\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{1008}+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{1008}+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{1008}+1\right)=2^{2016}-1< 2^{2016}=M\)

5 tháng 9 2021

\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=M\)

5 tháng 9 2021

\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=M\)

25 tháng 9 2021

\(3,\\ a,=a^2+2a+1-a^2+2a-1-3a^2+3=-3a^2+4a+3\\ b,=\left(m^3-m+1-m^2+3\right)^2=\left(m^3-m^2-m+4\right)^2\\ 4,\\ a,\Leftrightarrow25x^2+10x+1-25x^2+9=3\\ \Leftrightarrow10x=-7\Leftrightarrow x=-\dfrac{7}{10}\\ b,\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\\ \Leftrightarrow48x=46\Leftrightarrow x=\dfrac{23}{24}\\ c,\Leftrightarrow x^2+8x+16-x^2+1=16\\ \Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)

12 tháng 11 2023

\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

=>N<M

5 tháng 9 2021

\(P=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\dfrac{1}{2}\left(3^{128}-1\right)< 3^{128}-1=Q\)

5 tháng 9 2021

\(P=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2P=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2P=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2P=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\\ 2P=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)...\left(3^{64}+1\right)\\ 2P=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\\ 2P=\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\\ 2P=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1\\ P=\dfrac{3^{128}-1}{2}< Q=3^{218}-1\)

NV
19 tháng 9 2020

\(B=\left(2016-1\right)\left(2016+1\right)=2016^2-1< 2016^2\Rightarrow B< A\)

\(N=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1< 2^{16}\Rightarrow N< M\)

23 tháng 12 2015

\(M>2^0.2^2.2^4........2^{256}=2^{2+4+...+256}=2^{258.64}=2^{16512}>N\)

23 tháng 12 2015

M=(2+1)(2^2+1)(2^4+1)........(2^256+1)+1

=(2+1)(2-1)(2^2+1)(2^4+1).....(2^256+1)+1

=(2^2-1)(2^2+1)(2^4+1)....(2^256+1)+1

=(2^4-1)(2^4+1)......(2^256+1)+1

=...................

=(2^256-1)(2^256+1)+1

=2^512-1+1

=2^512

vậy M=N

bạn thêm 2-1 vào để đc hằng đẳng thức