Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự kẻ hình và viết giả thiết nha!
a) Vì tam giác ABC cân tại A
=> AB = AC
Xét tam giác ABH ,tam giác ACH có :
AB = AC (cmt)
AHB = AHC (=90 độ )(bạn tự đội thêm mũ cho góc)
AH chung
=> tam giác ABH = tam giác ACH (c.g.c)
=>HB = HC (2 cạnh tương ứng)
b) Vì tam giác ABH = tam giác ACH (cmb)
=>BAH = CAH (2 góc tương ứng)
=>AH là tia phân giác góc BAC
HB=HC
AH CẠNH CHUNG
AB=AC (CẠNH HUYỀN)
DO ĐÓ:AHB=AHC (C-C-C)
MÌNH LÀM ĐC NHIU ĐÓ CÒN NHIU BN TỰ LÀM NHÉ!!!
a) Xét \(\Delta\)ABH và \(\Delta\)ACH có :
AB = AC(vì \(\Delta\)ABC cân ở A)
\(\widehat{B}=\widehat{C}\)( \(\Delta\)ABC cân ở A)
=> \(\Delta\)ABH = \(\Delta\)ACH(cạnh huyền - góc nhọn)
b) Có \(\Delta\)ABH = \(\Delta\)ACH(cmt)
=> \(\widehat{BAH}=\widehat{CAH}\)
=> AH là tia phân giác của \(\widehat{BAC}\)
Hình vẽ :
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H
Sửa đề: Cho tam giác ABC cân tại A. Từ đỉnh A kẻ AH vuông góc với BC, H thuộc BC
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của \(\widehat{BAC}\)