K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

Đặt \(\left\{{}\begin{matrix}x=a-\dfrac{1}{2}\\y=b-\dfrac{1}{2}\\z=c-\dfrac{1}{2}\\t=d-\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow x+y+z+t=0\)

\(BDT\Leftrightarrow\dfrac{2\left(2x+1\right)}{4x^2+3}+\dfrac{2\left(2y+1\right)}{4y^2+3}+\dfrac{2\left(2z+1\right)}{4z^2+3}+\dfrac{2\left(2t+1\right)}{4t^2+3}\le\dfrac{8}{3}\)

\(\Leftrightarrow\dfrac{\left(2x-1\right)^2}{4x^2+3}+\dfrac{\left(2y-1\right)^2}{4y^2+3}+\dfrac{\left(2z-1\right)^2}{4z^2+3}+\dfrac{\left(2t-1\right)^2}{4t^2+3}\ge\dfrac{4}{3}\left(1\right)\)

Ta có: \(4x^2+3=3x^2+3+\left(y+z+t\right)^2\le3x^2+3+3\left(y^2+z^2+t^2\right)\)

\(=3\left(x^2+y^2+z^2+t^2+1\right)\)

\(\Rightarrow\dfrac{\left(2x-1\right)^2}{4x^2+3}\ge\dfrac{\left(2x-1\right)^2}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT_{\left(1\right)}\ge\dfrac{\left(2x-1\right)^2+\left(2y-1\right)^2+\left(2z-1\right)^2+\left(2t-1\right)^2}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

\(=\dfrac{4\left(x^2+y^2+z^2+t^2+1\right)-4\left(x+y+z+t\right)}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

\(=\dfrac{4\left(x^2+y^2+z^2+t^2+1\right)}{3\left(x^2+y^2+z^2+t^2+1\right)}=\dfrac{4}{3}=VP_{\left(1\right)}\)

a=b=c=d=\(\frac{1}{2}\) Uct xem

6 tháng 3 2022

ca này để thầy lâm ròi:<

6 tháng 3 2022

:v

NV
23 tháng 3 2022

Bunhiacopxki:

\(\left(a^2+b+c+d\right)\left(1+b+c+d\right)\ge\left(a+b+c+d\right)^2=16\)

\(\Rightarrow\dfrac{1}{a^2+b+c+d}\le\dfrac{1+b+c+d}{16}\)

Tương tự:

\(\dfrac{1}{b^2+c+d+a}\le\dfrac{1+c+d+a}{16}\) ; \(\dfrac{1}{c^2+d+a+b}\le\dfrac{1+d+a+b}{16}\)

\(\dfrac{1}{d^2+a+b+c}\le\dfrac{1+a+b+c}{16}\)

Cộng vế:

\(P\le\dfrac{4+3\left(a+b+c+d\right)}{16}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d=1\)

23 tháng 3 2022

Dạ em cám ơn thầy Lâm ạ!

NV
6 tháng 4 2022

Ta có:

\(\left(b^2+c^2+1\right)\left(1+1+a^2\right)\ge\left(a+b+c\right)^2=9\)

\(\Rightarrow\dfrac{1}{b^2+c^2+1}\le\dfrac{a^2+2}{9}\)

\(\Rightarrow\dfrac{a}{b^2+c^2+1}\le\dfrac{a^3+2a}{9}\)

Tương tự: \(\dfrac{b}{c^2+a^2+1}\le\dfrac{b^3+2b}{9}\) ; \(\dfrac{c}{a^2+b^2+1}\le\dfrac{c^3+2c}{9}\)

Cộng vế:

\(VT\le\dfrac{a^3+b^3+c^3+2\left(a+b+c\right)}{9}=\dfrac{a^3+b^3+c^3+6}{9}\) (1)

Lại có:

\(\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3a+3b+3c\)

\(\Rightarrow a^3+b^3+c^3\ge3\Rightarrow6\le2\left(a^3+b^3+c^3\right)\) (2)

(1);(2) \(\Rightarrow VT\le\dfrac{a^3+b^3+c^3+2\left(a^3+b^3+c^3\right)}{9}=\dfrac{a^3+b^3+c^3}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

6 tháng 4 2022

Cách giải của  thầy rất tự nhiên, em cám ơn thầy ạ!

2 tháng 4 2022

Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)

Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\) 

Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\) 

" = " \(\Leftrightarrow a=b=c=1\)

2 tháng 4 2022

 Dạ em cám ơn nhiều lắm ạ

 

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1. Chứng minh rằng: \(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\) Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR: 1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\) 2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+...
Đọc tiếp

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.

Chứng minh rằng:

\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\)\(3\sqrt{3}\)

Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:

1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\)\(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)

2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\)\(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)

Bài 3: Cho a, b,c ,d > 0. CMR:

\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\)\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)

Bài 4: tìm giá trị nhỏ nhất của biểu thức:

A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1

B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0

Bài 5: Với x > 0, chứng minh rằng:

( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3

Giúp mk với, mai mk phải kiểm tra rồi!!

4
AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 1:

Áp dụng BĐT Cauchy:

\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 4:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)

\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)

Vậy \(A_{\min}=5+2\sqrt{6}\)

Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)

------------------------------

Áp dụng BĐT Cauchy:

\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)

Cộng theo vế hai BĐT trên:

\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$

AH
Akai Haruma
Giáo viên
29 tháng 1 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^2+\frac{1}{b^2})(1+4^2)\geq (a+\frac{4}{b})^2\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{1}{\sqrt{17}}(a+\frac{4}{b})\)

Hoàn toàn tương tự với những cái còn lại và cộng theo vế suy ra:

$S\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c})$

$\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{36}{a+b+c})$ theo BĐT Cauchy-Schwarz.

Áp dụng BĐT AM-GM:

\(a+b+c+\frac{9}{4(a+b+c)}\geq 3\)

\(\frac{135}{4(a+b+c)}\geq \frac{135}{4.\frac{3}{2}}=\frac{45}{2}\)

\(\Rightarrow a+b+c+\frac{36}{a+b+c}\geq \frac{51}{2}\)

\(\Rightarrow S\geq \frac{3\sqrt{17}}{2}\)

Vậy $S_{\min}=\frac{3\sqrt{17}}{2}$

 

AH
Akai Haruma
Giáo viên
29 tháng 1 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^2+\frac{1}{b^2})(1+4^2)\geq (a+\frac{4}{b})^2\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{1}{\sqrt{17}}(a+\frac{4}{b})\)

Hoàn toàn tương tự với những cái còn lại và cộng theo vế suy ra:

$S\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c})$

$\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{36}{a+b+c})$ theo BĐT Cauchy-Schwarz.

Áp dụng BĐT AM-GM:

\(a+b+c+\frac{9}{4(a+b+c)}\geq 3\)

\(\frac{135}{4(a+b+c)}\geq \frac{135}{4.\frac{3}{2}}=\frac{45}{2}\)

\(\Rightarrow a+b+c+\frac{36}{a+b+c}\geq \frac{51}{2}\)

\(\Rightarrow S\geq \frac{3\sqrt{17}}{2}\)

Vậy $S_{\min}=\frac{3\sqrt{17}}{2}$

 

28 tháng 6 2021

hmmm-khó đấy

 

NV
28 tháng 6 2021

Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn

Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng

NV
17 tháng 1 2021

Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)

Đơn giản là kiên nhẫn tính toán và tách biểu thức:

\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)

Sau đó Cô-si cho từng ngoặc là được

13 tháng 1 2022

Có cách nào làm ngắn hơn ko ạ