Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= ( 2x+3)(x-1) - (x+1)(2x-5) -2
= \(2x^2-2x+3x-3-\left(2x^2-5x+2x-5\right)-2\)
= \(2x^2-2x+3x-3-2x^2+5x-2x+5-2\)
= \(4x\)
B= \(\left(x-4\right)\left(x-2\right)-\left(3x+1\right)\left(\frac{1}{3}x-2\right)+2\frac{1}{3}x-10\)
= \(x^2-2x-4x+8-\left(x^2-6x+\frac{1}{3}x-2\right)+\frac{7}{3}x-10\)
= \(x^2-2x-4x+8-x^2+6x-\frac{1}{3}x+2+\frac{7}{3}x-10\)
= \(2x\)
Ta được: \(\frac{A}{B}=\frac{4x}{2x}=2\)
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
\(A=2x^2-2x+3x-3-\left(2x^2-5x+2x-5\right)-2\)
\(=2x^2+x-5-2x^2+3x+5=4x\)
\(B=x^2-6x+8-\left(x^2-6x+\dfrac{1}{3}x-2\right)+\dfrac{7}{3}x-10\)
\(=x^2-\dfrac{11}{3}x-2-x^2+6x-\dfrac{1}{3}x+2\)
\(=2x\)
Vậy: A=2B