K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nối các điểm ta có tứ giác MNPQMNPQ

Tứ giác MNPQMNPQ có:

- Các cạnh bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài 2cm2cm, chiều rộng 1cm1cm. Do đó theo định lí Py-ta-go, ta có:

MN=NP=PQ=QM=√22+12=√5(cm)MN=NP=PQ=QM=22+12=5(cm).

Hay MNPQMNPQ là hình thoi.

- Các đường chéo bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài 3cm3cm, chiều rộng 1cm1cm nên theo định lý Py-ta-go ta có độ dài đường chéo là:

MP=NQ=√32+12=√10(cm).MP=NQ=32+12=10(cm). 

Như vậy hình thoi MNPQMNPQ có hai đường chéo bằng nhau nên MNPQMNPQ là hình vuông.

Vậy diện tích hình vuông MNPQMNPQ bằng MN2=(√5)2=5(cm2)


 

13 tháng 5 2021

Ta thấy mỗi cạnh của tứ giác MNPQ là đường chéo của hình chữ nhật do hai ô vuông ghép lại, nên hình đó có bốn cạnh bằng nhau và bằng \sqrt{1^2+2^2}=\sqrt{5}căn 1^2 + 2^2 = căn 5 (đvđd) (định lý Pytago)

Tứ giác MNPQ có bốn cạnh bằng nhau nên tứ giác MNPQ là hình thoi.

Mỗi đường chéo của tứ giác MNPQ là đường chéo của hình chữ nhật do ba ô vuông ghép lại, nên giác MNPQ có hai đường chéo bằng nhau và bằng căn 1^ 2 + 3^2 = căn 10 đvđ d\sqrt{1^2+3^2}=\sqrt{10}c(đvđd)

Hình thoi MNPQ có hai đường chéo bằng nhau nên tứ giác MNPQ là hình vuông.

Diện tích hình vuông MNPQ:

            S = (\sqrt{5})^2 = 5 (đvdt)

8 tháng 3 2017

Dựa vào định lý Pitago, ta thấy mỗi cạnh của tứ giác MNPQ là đường chéo của hình chữ nhật do hai ô vuông ghép lại, nên hình đó có bốn cạnh bằng nhau và bằng

Để học tốt Toán 9 | Giải toán lớp 9

Tứ giác MNPQ là hình thoi có bốn cạnh bằng nhau.

Mỗi đường chéo của tứ giác MNPQ là đường chéo của hình chữ nhật do ba ô vuông ghép lại, nên giác NMPQ có hai đường chéo bằng nhau và bằng

Để học tốt Toán 9 | Giải toán lớp 9

Hình thoi MNPQ là hình vuông có hai đường chéo bằng nhau.

Diện tích hình vuông MNPQ:

            S = (√5)2 = 5 (cm2)

16 tháng 9 2017

Dựa vào định lý Pitago, ta thấy mỗi cạnh của tứ giác MNPQ là đường chéo của hình chữ nhật do hai ô vuông ghép lại, nên hình đó có bốn cạnh bằng nhau và bằng

Để học tốt Toán 9 | Giải toán lớp 9

Tứ giác MNPQ là hình thoi có bốn cạnh bằng nhau.

Mỗi đường chéo của tứ giác MNPQ là đường chéo của hình chữ nhật do ba ô vuông ghép lại, nên giác NMPQ có hai đường chéo bằng nhau và bằng

Để học tốt Toán 9 | Giải toán lớp 9

Hình thoi MNPQ là hình vuông có hai đường chéo bằng nhau.

Diện tích hình vuông MNPQ:

        S   =   ( √ 5 ) 2   =   5   ( c m 2 )        

13 tháng 9 2019

Tham khảo:

Tứ giác MNPQ có:
- Các cạnh bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài 2cm, chiều rộng 1cm. Do đó theo định lý Pytago:

- Các đường chéo bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài 3cm, chiều rộng 1cm nên độ dài đường chéo là:

Từ các kết quả trên suy ra MNPQ là hình vuông. Vậy diện tích tứ giác MNPQ bằng:
= 5 (cm2)
Đáp số: 5 cm2

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam giác ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

1
29 tháng 9 2016

khó quá đi à

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam iacs ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

0
15 tháng 8 2017

Vì ∆ ABC đồng dạng với ∆ AMN nên:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Diện tích hình chữ nhật MNPQ là:

SMNPQ = MN. NP = MN.KH = MN.( AH – AK)

=> SMNPQ = 16k.( 12- 12k)

Theo đề bài diện tích hình chữ nhật đó là 36cm2 nên

16k.( 12- 12k ) = 36

⇔ 16k.12( 1- k) = 36

⇔ 16k(1 – k) = 3 ( chia cả hai vế cho 12)

⇔ 16k – 16k2 = 3

⇔ 16k2- 16k + 3= 0

Ta có: ∆’= (-8)2 – 16.3 = 16> 0

Phương trình trên có 2 nghiệm là:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy để diện tích hình chữ nhật MNPQ là 36cm2 thì vị trí điểm M phải thỏa mãn:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

22 tháng 10 2019

Vì ∆ ABC đồng dạng với ∆ AMN nên:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Diện tích hình chữ nhật MNPQ là:

SMNPQ = MN. NP = MN.KH = MN.( AH – AK)

=> SMNPQ = 16k.( 12- 12k)

Theo đề bài diện tích hình chữ nhật đó là 36cm2 nên

16k.( 12- 12k ) = 36

⇔ 16k.12( 1- k) = 36

⇔ 16k(1 – k) = 3 ( chia cả hai vế cho 12)

⇔ 16k – 16k2 = 3

⇔ 16k2- 16k + 3= 0

Ta có: ∆’= (-8)2 – 16.3 = 16> 0

Phương trình trên có 2 nghiệm là:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy để diện tích hình chữ nhật MNPQ là 36cm2 thì vị trí điểm M phải thỏa mãn:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9