K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

\(a,\)So le trong: \(E_1 và F_2;E_2 và F_1\)

Đồng vị: \(E_1 và F_4;E_2 và F_3;E_3 và F_2;E_4 và F_1\)

Trong cùng phía: \(E_1 và F_1;E_2 và F_2\)

\(b,\widehat{F_1}=\widehat{F_3}=120^0\left(đối.đỉnh\right)\\ \widehat{F_2}+\widehat{F_3}=180^0\left(kề.bù\right)\Rightarrow\widehat{F_2}=180^0-120^0=60^0\\ \widehat{F_2}=\widehat{F_4}-60^0\left(đối.đỉnh\right)\)

\(c,C_1:\widehat{F_2}=\widehat{E_3}\left(=60^0\right)\)

Mà 2 góc này ở vị trí đồng vị nên \(a//b\)

\(C_2:\)\(\widehat{E_1}=\widehat{E_3}=60^0\left(đối.đỉnh\right)\Rightarrow\widehat{E_1}=\widehat{F_2}\left(=60^0\right)\)

Mà 2 góc này ở vị trí so le trong nên \(a//b\)

28 tháng 9 2021

a. Các cặp góc:

- So le trong là: \(\widehat{E_1}\) và \(\widehat{F_2};\widehat{E_2}\) và \(\widehat{F_1}\)

- Đồng vị là: \(\widehat{E_4},\widehat{F_1};\widehat{E_3},\widehat{F_2};\widehat{E_2},\widehat{F_3};\widehat{E_1},\widehat{F_4}\)

- Trong cùng phía là: \(\widehat{E_1},\widehat{F_1};\widehat{E_2},\widehat{F_2}\)

b. Ta có: \(\widehat{F_1}=\widehat{F_3}=120^o\) (đối đỉnh)

\(\widehat{F_2}=180^o-\widehat{F_1}=180^o-120^o=60^o\)

\(\widehat{F_3}=120^o\)

\(\widehat{F_4}=\widehat{F_2}=60^o\) (đối đỉnh)

c. 

C1: Ta có: \(\widehat{E_1}=\widehat{E_3}=60^o\) (đối đỉnh)

Ta thấy: \(\widehat{E_1}=\widehat{F_2}=60^o\) 

=> a//b (so le trong)

C2: Ta có: \(\widehat{E_2}=180^o-\widehat{E_3}=180^o-60^o=120^o\)

Ta thấy: \(\widehat{E_2}=\widehat{F_1}=120^o\) 

=> a//b (so le trong)

8 tháng 8 2019

Mk đg cần gấp giúp mk với nha mn :)))

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

25 tháng 7 2017

AI giúp mình với!

25 tháng 7 2017

Em nghĩ chị nên lên học 24h để được giải đáp tốt hơn vì ở đây chắc chỉ dành cho lớp 5 trở xuống ạ !

8 tháng 8 2019

1. x O x' y y'

Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)

=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)

 \(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)

Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)

  

8 tháng 8 2019

1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)

=> \(2.\widehat{x'Oy}=210^0\)

=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)

          => \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)

2.  O x y x' y' m m'

Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)

          \(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}\) 

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì  Om là tia p/giác)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\) 

=> Om' nằm giữa Ox' và Oy'

=> Om' là tia p/giác của góc x'Oy'

b) Tự viết

19 tháng 9 2016

c a b

19 tháng 9 2016

b, Có