K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\sqrt{12-2\sqrt{11}}\)

\(=\sqrt{11-2\cdot\sqrt{11}\cdot1+1}\)

\(=\sqrt{11}-1\)

b) Ta có: \(\sqrt{24+8\sqrt{5}}\)

\(=\sqrt{20+2\cdot2\sqrt{5}\cdot2+4}\)

\(=2\sqrt{5}+2\)

c) Ta có: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=2-\sqrt{3}+\sqrt{3}-1\)

=1

d) Ta có: \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

e) Ta có: \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)

\(=2-\sqrt{2}+3\sqrt{2}-2\)

\(=2\sqrt{2}\)

f) Ta có: \(\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}\)

\(=3-2\sqrt{2}-2\sqrt{2}-1\)

\(=2-4\sqrt{2}\)

23 tháng 10 2023

\(\dfrac{6}{\sqrt{2}-\sqrt{3}+3}\)

\(=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{\left(\sqrt{2}-\sqrt{3}\right)^2-9}\)

\(=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\)

\(=\dfrac{-3\left(\sqrt{2}-\sqrt{3}-3\right)}{2+\sqrt{6}}=\dfrac{-3\left(\sqrt{6}-2\right)\left(\sqrt{2}-\sqrt{3}-3\right)}{2}\)

 

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)

8 tháng 8 2021

$\sin^4 a-cos^4 a+2\sin^2 a.\cos^2 a\\=(\sin^4 a-\cos^4 a)+2\sin^2 a.\cos^2 a\\=(\sin^2 a+\cos^2 a)(\sin^2-\cos ^2 )+2\sin^2 a.\cos^2 a\\=\sin^2 a-\cos^2 a+2\sin^2 a.\cos^2 a$

a: Ta có: \(\sqrt{2x-1}=4\)

\(\Leftrightarrow2x-1=16\)

\(\Leftrightarrow2x=17\)

hay \(x=\dfrac{17}{2}\)

b: Ta có: \(\sqrt{4x+4}-\sqrt{9x+9}=-6\)

\(\Leftrightarrow-\sqrt{x+1}=-6\)

\(\Leftrightarrow x+1=36\)

hay x=35

31 tháng 8 2021

chị ơi còn bài 1 ạ

 

Ta có: \(D=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-2\sqrt{5}+3}}\)

\(A=\sqrt{5-2\sqrt{6}}-\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}-\sqrt{3}+\sqrt{2}\)

=0

Ta có: \(A=\left(\sqrt{6}+\sqrt{10}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

=5-3=2