K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

góc F=90-30=60 độ

Xét ΔDEF vuông tại D có sin E=DF/EF

=>DF/20=1/2

=>DF=10cm

=>DE=10*căn 3(cm)

3 tháng 10 2021

\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)

\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)

Xét ΔDEF vuông tại D có 

\(DE=DF\cdot\cos60^0\)

\(=15\cdot\dfrac{1}{2}=7.5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔDFE vuông tại D, ta được:

\(EF^2=DE^2+DF^2\)

\(\Leftrightarrow DF^2=15^2-7.5^2=\dfrac{675}{4}\)

hay \(DF=\dfrac{15\sqrt{3}}{2}\left(cm\right)\)

6 tháng 11 2021

NGO23455678

30 tháng 8 2021

DE=cos E .EF
DE=0,5.15
DE=7,5cm
DF=sinE.EF
DF=\(\dfrac{\sqrt{3}}{2}.15=\dfrac{15\sqrt{3}}{2}\)

30 tháng 8 2021

Ta có: \(\cos60^o=\dfrac{DE}{E\text{F}}=\dfrac{\text{1}}{2}\Rightarrow DE=\dfrac{E\text{F}}{2}=\dfrac{\text{1}5}{2}=7,5cm\)

Áp dụng định lí Py-ta-go vào ΔDEF vuông tại D

⇒ EF2=DE2+DF2 ⇒ DF2=EF2-DE2=152-7,52=168,75

\(DF=\dfrac{15\sqrt{3}}{2}\) cm 

10 tháng 11 2023

a: ΔDEF vuông tại D

=>\(DE^2+DF^2=EF^2\)

=>\(EF^2=0,9^2+12^2=144,81\)

=>\(EF=\sqrt{144,81}\)(cm)

Xét ΔDEF vuông tại D có \(tanE=\dfrac{DF}{DE}\)

=>\(tanE=\dfrac{12}{0,9}=\dfrac{120}{9}=\dfrac{40}{3}\)

b: Xét ΔDEF vuông tại D có

\(sinF=\dfrac{DE}{EF}=\dfrac{0.9}{\sqrt{144,81}}\)

\(cosF=\dfrac{DF}{EF}=\dfrac{12}{\sqrt{144,81}}\)

\(tanF=\dfrac{0.9}{12}=\dfrac{9}{120}=\dfrac{3}{40}\)

\(cotF=\dfrac{12}{0.9}=\dfrac{40}{3}\)

a: Xét ΔDEF có \(EF^2=DE^2+DF^2\)

nên ΔDEF vuông tại D

a) Áp dụng định lí Pytago vào ΔEDF vuông tại D, ta được:

\(EF^2=DF^2+DE^2\)

\(\Leftrightarrow DF^2=13^2-9^2=88\)

hay \(DF=2\sqrt{22}\left(cm\right)\)

Xét ΔEDF vuông tại D có 

\(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{2\sqrt{22}}{13}\)

nên \(\widehat{E}\simeq46^0\)

\(\Leftrightarrow F=44^0\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔDFE vuông tại D có DI là đường cao ứng với cạnh huyền EF, ta được:

\(DI\cdot EF=DF\cdot DE\)

\(\Leftrightarrow DI=\dfrac{18\sqrt{22}}{13}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔDIF vuông tại I, ta được:

\(DF^2=DI^2+IF^2\)

\(\Leftrightarrow IF^2=DF^2-DI^2=\left(2\sqrt{22}\right)^2-\left(\dfrac{18\sqrt{22}}{13}\right)^2=\dfrac{7744}{169}\)

hay \(IF=\dfrac{88}{13}\left(cm\right)\)

Ta có: IE+IF=EF(I nằm giữa E và F)

nên \(IE=EF-IF=13-\dfrac{88}{13}=\dfrac{81}{13}\left(cm\right)\)

c) Xét tứ giác DMIN có 

\(\widehat{NDM}=90^0\)

\(\widehat{IND}=90^0\)

\(\widehat{IMD}=90^0\)

Do đó: DMIN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: DI=MN(Hai đường chéo của hình chữ nhật DMIN)

mà \(DI=\dfrac{18\sqrt{22}}{13}\left(cm\right)\)

nên \(MN=\dfrac{18\sqrt{22}}{13}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDIE vuông tại I có IM là đường cao ứng với cạnh huyền DE, ta được:

\(DM\cdot DE=DI^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDIF vuông tại I có IN là đường cao ứng với cạnh huyền DF, ta được:

\(DN\cdot DF=DI^2\)(2)

Từ (1) và (2) suy ra \(DM\cdot DE=DN\cdot DF\)

NV
16 tháng 8 2021

\(\widehat{E}=180^0-\left(\widehat{D}+\widehat{F}\right)=41^0\)

Trong tam giác vuông DEH:

\(cotE=\dfrac{EH}{DH}\Rightarrow EH=DH.cotE\)

Trong tam giác vuông DFH:

\(cotF=\dfrac{FH}{DH}\Rightarrow FH=DH.cotF\)

\(\Rightarrow EH+FH=\text{DH}.cotE+DH.cotF\)

\(\Leftrightarrow EF=DH\left(cotE+cotF\right)\)

\(\Rightarrow DH=\dfrac{EF}{cotE+cotF}=\dfrac{15}{cot41^0+cot24^0}\approx4,42\left(cm\right)\)

Trong tam giác vuông DEH

\(sinE=\dfrac{DH}{DE}\Rightarrow DE=\dfrac{DH}{sinE}=\dfrac{4,42}{sin41^0}\approx6,74\left(cm\right)\)

NV
16 tháng 8 2021

undefined