Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+2i\right)z-5=3i\Leftrightarrow\left(1+2i\right)z=5+3i\)
\(\Rightarrow z=\dfrac{5+3i}{1+2i}=\dfrac{11}{5}-\dfrac{7}{5}i\)
\(\Rightarrow\overline{z}=\dfrac{11}{5}+\dfrac{7}{5}i\)
2.
Đề câu này là: \(3z-5\overline{z}-6+10i=0\) đúng không nhỉ?
Đáp án C.
Phương pháp giải: Lấy môđun hai vế để tìm z ,thế ngược lại để tìm số phức z
Lời giải:
Ta có
Lấy môđun 2 vế, ta được
z = - i - 1 + 2 + 2 = - i 1 + 2 = ( 1 - 2 ) i ⇒ a = 0 b = 1 - 2
Vậy
\(\frac{2-iz}{2+i}-\frac{z+2i}{1-2i}=2\overline{z}\)
\(\Leftrightarrow\frac{2-i\left(a+bi\right)}{2+i}-\frac{a+bi+2i}{1-2i}=2\left(a-bi\right)\)
\(\Leftrightarrow\frac{\left(b+2-ai\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}-\frac{\left[a+\left(b+2\right)i\right]\left(1+2i\right)}{1-2i}=2\left(a-bi\right)\)
\(\Leftrightarrow\frac{2\left(b+2\right)-a-\left(2a+b+2\right)i}{5}-\frac{a-2b-4+\left(2a+b+2\right)i}{5}=2\left(a-bi\right)\)
\(\Leftrightarrow\left[\left(2b+4\right)-a-\left(a-2b-4\right)-10a\right]-\left(2a+b+2+2a+b+2-10b\right)i=0\)
\(\Leftrightarrow\hept{\begin{cases}-12a+4b=-8\\4a-8b=-4\end{cases}}\Leftrightarrow a=b=1\).
\(a^2+b^2-ab=1^2+1^2-1.1=1\)