K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chit cho mình vui vẻ vào năm mới

22 tháng 1 2016

P < 0 => P là số âm 

a > 0 => a là số dương

b > c => dasu của b là + 

c là trừ

22 tháng 1 2016

b là dấu dương

c là dấu âm

12 tháng 1 2016

các bạn giúp mik bài 1 zới

13 tháng 9 2023

vì số tận cùng là 0 hoặc 5 nên 3 số đó là C={505;510;515}

13 tháng 9 2023

Tham khảo nhé bn

a) A = {0; 3; 6; 9; 12; 15};

Ta thấy các số 0; 3; 6; 9; 12; 15 là các số tự nhiên chia hết cho 3 và nhỏ hơn 16 nên ta viết tập hợp A bằng cách chỉ ra tính chất đặc trưng là:

A = {x | x là số tự nhiên chia hết cho 3, x < 16}.

b) B = {5; 10; 15; 20; 25; 30};

Ta thấy các số 5; 10; 15; 20; 25; 30 là các số tự nhiên chia hết cho 5, lớn hơn 0 và nhỏ hơn 31 (hoặc ta có thể viết nhỏ hơn 32; …; 35).

Vậy ta có thể viết tập hợp B bằng các cách sau:

Cách 1:

B = {x | x là các số tự nhiên chia hết cho 5, 0 < x < 31}.

Cách 2:

B = {x | x là các số tự nhiên chia hết cho 5, 0 < x < 35}…

c) C = {10; 20; 30; 40; 50; 60; 70; 80; 90};

Ta thấy các số 10; 20; 30; 40; 50; 60; 70; 80; 90 là các số tự nhiên chia hết cho 10, lớn hơn 0 và nhỏ hơn 100 (hoặc ta có thể viết nhỏ hơn 91; …; 99).

Vậy ta có thể viết tập hợp C bằng các cách sau:

Cách 1:

C = {x | x là các số tự nhiên chia hết cho 10, 0 < x < 91}.

Cách 2:

  ad

C = {x | x là các số tự nhiên chia hết cho 10, 0 < x < 100}…

d) D = {1; 5; 9; 13; 17}

Ta thấy các số 1; 5; 9; 13; 17 là các số tự nhiên thỏa mãn số sau hơn số trước 4 đơn vị (hay còn gọi là hơn kém nhau 4 đơn vị) bắt đầu từ 1 và nhỏ hơn 18.

Do đó ta viết tập hợp D là:

D = {x | x là các số tự nhiên hơn kém nhau 4 đơn vị bắt đầu từ 1, x < 18}.

3 tháng 8 2023

\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .

Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)

            Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)

\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)

   Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)

\(=\left(n+1\right)^2\) 

Vì n thuộc N nên tổng của A là : một số chính phương . 

\(c)\) Ta có : Số hạng của dãy số B là : n

     Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)

\(=n.\left(n+1\right)\) 

Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 . 

Ta thấy chúng đều không thoả mãn .

vậy.............

            

3 tháng 8 2023

Bạn xem lại câu A+B mới là số chính phương k?

22 tháng 5 2016

c đề thiếu 

22 tháng 5 2016

thiếu gì vậy bạn