Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P < 0 => P là số âm
a > 0 => a là số dương
b > c => dasu của b là +
c là trừ
vì số tận cùng là 0 hoặc 5 nên 3 số đó là C={505;510;515}
Tham khảo nhé bn
a) A = {0; 3; 6; 9; 12; 15};
Ta thấy các số 0; 3; 6; 9; 12; 15 là các số tự nhiên chia hết cho 3 và nhỏ hơn 16 nên ta viết tập hợp A bằng cách chỉ ra tính chất đặc trưng là:
A = {x | x là số tự nhiên chia hết cho 3, x < 16}.
b) B = {5; 10; 15; 20; 25; 30};
Ta thấy các số 5; 10; 15; 20; 25; 30 là các số tự nhiên chia hết cho 5, lớn hơn 0 và nhỏ hơn 31 (hoặc ta có thể viết nhỏ hơn 32; …; 35).
Vậy ta có thể viết tập hợp B bằng các cách sau:
Cách 1:
B = {x | x là các số tự nhiên chia hết cho 5, 0 < x < 31}.
Cách 2:
B = {x | x là các số tự nhiên chia hết cho 5, 0 < x < 35}…
c) C = {10; 20; 30; 40; 50; 60; 70; 80; 90};
Ta thấy các số 10; 20; 30; 40; 50; 60; 70; 80; 90 là các số tự nhiên chia hết cho 10, lớn hơn 0 và nhỏ hơn 100 (hoặc ta có thể viết nhỏ hơn 91; …; 99).
Vậy ta có thể viết tập hợp C bằng các cách sau:
Cách 1:
C = {x | x là các số tự nhiên chia hết cho 10, 0 < x < 91}.
Cách 2:
adC = {x | x là các số tự nhiên chia hết cho 10, 0 < x < 100}…
d) D = {1; 5; 9; 13; 17}
Ta thấy các số 1; 5; 9; 13; 17 là các số tự nhiên thỏa mãn số sau hơn số trước 4 đơn vị (hay còn gọi là hơn kém nhau 4 đơn vị) bắt đầu từ 1 và nhỏ hơn 18.
Do đó ta viết tập hợp D là:
D = {x | x là các số tự nhiên hơn kém nhau 4 đơn vị bắt đầu từ 1, x < 18}.
\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .
Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)
Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)
\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)
Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right)^2\)
Vì n thuộc N nên tổng của A là : một số chính phương .
\(c)\) Ta có : Số hạng của dãy số B là : n
Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)
\(=n.\left(n+1\right)\)
Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 .
Ta thấy chúng đều không thoả mãn .
vậy.............