K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2021

Hình thì bạn tự vẽ nhé

                                                                                       Bài làm                  

Áp dụng định lý Pi - ta - go đảo vào tam giác ABC ta có :

AB2 + AC= BC2 

32 + 4= 52 

9 + 16 = 25

25 = 25 ( luôn đúng )

=> Tam giác ABC vg tại A

a: XétΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b:Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

18 tháng 6 2021

 ( BC (E ( BC)?????

a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔBAC vuông tại A(Định lí Pytago đảo)

b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: DA=DE(hai cạnh tương ứng)

c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(hai cạnh tương ứng)

mà DC>DE(ΔDEC vuông tại E)

nên DF>DE

 
5 tháng 7 2021

Thank

27 tháng 4 2022

lx

1 tháng 4 2022

a, Ta có \(BC^2=AB^2+AC^2\Leftrightarrow25=9+16\)( luôn đúng ) 

Vậy tam giác ABC vuông tại A(pytago đảo) 

b, Xét tam giác BAD và tam giác BED có 

^ABD = ^EBD ; BD _ chung 

Vậy tam giác BAD = tam giác BED ( ch-gn) 

=> DA = DE ( 2 cạnh tương ứng ) 

c, Xét tam giác ADF và tam giác EDC có 

DA = DE ; ^ADF = ^EDC ( đối đỉnh ) 

Vậy tam giác ADF = tam giác EDC ( ch-cgv) 

=> DF = DC ( 2 cạnh tương ứng ) 

mà DC > DE ( cạnh huyền lớn hơn cạnh góc vuông tam giác DEC vuông tại E ) 

=> DF > DE 

12 tháng 4 2022

chuẩn lun giỏi quá cho 1 like

20 tháng 5 2021

ai giúp mik đc ko xin các bạn

 

20 tháng 5 2021

△ABC có BC\(^2\)=5\(^2\)=25

AB\(^2\)+AC\(^2\)=3\(^2\)+4\(^2\)=9+16=25

=>△ABC vuông tại B ( theo ĐL đảo Py Ta Go)

a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của ΔABC)

Do đó: ΔBAD=ΔBED(Cạnh huyền-góc nhọn)

Suy ra: DA=DE

27 tháng 4 2016

a) Ta có: \(BC^2=AB^2+AC^2\) (do \(5^2=4^2+3^2\) )

\(\Rightarrow\Delta ABC\) vuông tại A

b) Xét 2 tam giác vuông BDA và BDE, có:

Góc ABD = góc EBD (phân giác BD của góc B)

BD là cạnh chung

\(\Rightarrow\) \(\Delta\) vuông BDA = \(\Delta\) vuông BDE(cạnh huyền - góc nhọn)

\(\Rightarrow\) DA = DE(2 cạnh tương ứng)

c) Xét 2 tam giác vuông ADF và EDC, ta có:

DA = DE (chứng minh a)

 góc ADF = góc EDC (đối đỉnh)

\(\Rightarrow\Delta\) vuông ADF = \(\Delta\) vuông EDC (cạnh góc vuông - góc nhọn)

Ta có: \(\Delta\)ADF là tam giác vuông tại A 

\(\Rightarrow\) DF là cạnh huyền của tam giác ADF

\(\Rightarrow\) DF > DA

Mà DE = DA (\(\Delta ADF=\Delta EDC\) )

nên DF > DE

10 tháng 5 2017

a)

Ta có:

\(AB^2+AC^2=BC^2=3^2+4^2=25\)

\(\Rightarrow BC=5\left(cm\right)\)\(\Rightarrow\Delta ABC⊥A\)

b)

Xét \(\Delta ABD\) và  \(\Delta EDB\) có:

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

\(BD\)là cạnh chung

\(\widehat{A}=\widehat{E}=90^o\)

\(\Rightarrow\Delta ABD=\Delta EBD\left(g.c.g\right)\)

\(\Rightarrow DA=DE\)( hai cạnh tương ứng )

\(\RightarrowĐpcm\)

c) Đề sai thì phải!

10 tháng 2 2019

a, co: ab2+ac2=32+42=9+16=25   

      bc2=52=25

suy ra :ab2+ac2=bc2

suy ra:  tamgiac abc vuong tai a (dinh ly pytago dao )

b, ......

c, ......