K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2023

nui

15 tháng 12 2023

1) Xét △ABH vuông tại H có:

      \(\sin\widehat{ABH}=\dfrac{AH}{AB}\)(tỉ số lượng giác)

 ⇒ \(AB=\dfrac{AH}{\sin\widehat{ABH}}=\dfrac{2,1}{\sin28^o}\approx4,5\left(m\right)\)

Vậy độ dài của mặt cầu trượt khoảng 4,5m.

2) 

loading... 

a) Xét △AMB có: A, M, B ∈ (O) (gt)

                              AB là đường kính của (O) (gt)

  ⇒ △AMB vuông tại M(ĐL về sự xác định của đường tròn)

   Xét △AMB vuông tại M có: O là trung điểm AB(gt)

                                                  OH // AM (⊥ MB)

  ⇒ OH là đường trung bình của △AMB

  ⇒ H là trung điểm của MB (t/c)(đpcm)

  Xét △NMB có: H là trung điểm của MB(cmt)

                         NH ⊥ MB(do N ∈ OH ⊥ MB)

  ⇒ NH là đường trung tuyến đồng thời cũng là đường cao trong △NMB

  ⇒ △NMB cân tại N(t/c △ cân)

  ⇒ NM = NB(t/c △ cân)

  Xét △NMO và △NBO có:

      ON chung

      NM = NB(cmt)

      OM = OB(= R)

  ⇒ △NMO = △NBO (c.c.c)

  ⇒ \(\widehat{NMO}=\widehat{NBO}=90^o\)

  ⇒ NM ⊥ MO

  Mà OM = R

  ⇒ MN là tiếp tuyến của đường tròn (O; R) (đpcm)

b) Xét △MAB và △HBN có: 

     \(\widehat{AMB}=\widehat{BHN}=90^o\)

     \(\widehat{MBA}=\widehat{HNB}\) (do cùng phụ với \(\widehat{NOB}\))

 ⇒ △MAB ∼ △HBN (g.g)(đpcm)

 

 

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
15 tháng 9 2019

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC

HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA

b, Ta có  K D C ^ = A O D ^ (cùng phụ với góc  O B C ^ )

=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO

c, Ta có:  M B A ^ = 90 0 - O B M ^ và  M B C ^ = 90 0 - O M B ^

Mà  O M B ^ = O B M ^ (∆OBM cân) =>  M B A ^ = M B C ^

=> MB là phân giác  A B C ^ . Mặt khác AM là phân giác B A C ^

Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC

d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A

=> CA = AB = AP => A là trung điểm CK

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

Bạn nào giúp mình bài này với =))1.  Cho đường tròn (O;R) và (O' ; R') tiếp xúc ngoài tại M ( R > R' ) .Vẽ các đường kính MOA và MO'B . Gọi H là trung điểm của AB , vẽ dây CD của đương tròn (O) vuông góc với AB tại H.a) Tứ giác ACBD là hình gì ? b) Gọi I là giao điểm của DB với đường tròn (O') . Chứng minh CM vuông góc với DB . Suy ra 3 điểm C, M, I thẳng hàng c) Chứng minh HI là tiếp tuyến của...
Đọc tiếp

Bạn nào giúp mình bài này với =))

1.  Cho đường tròn (O;R) và (O' ; R') tiếp xúc ngoài tại M ( R > R' ) .Vẽ các đường kính MOA và MO'B . Gọi H là trung điểm của AB , vẽ dây CD của đương tròn (O) vuông góc với AB tại H.

a) Tứ giác ACBD là hình gì ? 

b) Gọi I là giao điểm của DB với đường tròn (O') . Chứng minh CM vuông góc với DB . Suy ra 3 điểm C, M, I thẳng hàng 

c) Chứng minh HI là tiếp tuyến của đường trong ( O')

2. Cho tam giác OAO' vuông tại A ( O'A < OA ) . Vẽ hai đường tròn ( O; OA ) và (O' ; O'A ).

a) Chứng minh 2 đường trong (O) và (O') cắt nhau 

b) Gọi B là giao điểm ( khác A ) của 2 đường tròn ( O ) và (O') . Chứng minh đường thẳng OB là tiếp tuyến của đường tròn (O')

c) Gọi I là trung điểm của OO' và C là điểm đối xứng của A qua I . Chứng minh tứ giác OO'BC là hình thang cân .

0

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

29 tháng 5 2017

a) Nối O với N. Ta có \(\widehat{OAN}\)=\(\widehat{OBN}\)=\(\widehat{ONM}\)=90° →các góc này nội tiếp chắn nửa đường tròn đường kính ON →O,A,B,N,M cùng nằm trên đường tròn đường kính ON.

b) Nối A với M. Xét tứ giác nội tiếp OANB(chứng minhnội tiếp trước)ta có \(\widehat{AMO}\)=\(\frac{1}{2}\)\(\widebat{OA}\);\(\widehat{OAB}\)=\(\frac{1}{2}\)\(\widebat{OB}\) mà 

  • \(\widebat{OA}\)=\(\widebat{OB}\)\(\widehat{AMO}\)=.\(\widehat{OAB}\)=\(\widehat{OAI}\)Xét tam giác OAI và tam giác OMA: \(\widehat{O}\)chung ,\(\widehat{OAI}\)=\(\widehat{AMO}\)\(\Rightarrow\)hai tam giác đồng dạng (g.g) \(\Rightarrow\)\(\frac{OI}{OA}\)=\(\frac{OA}{OM}\)\(\Leftrightarrow\)OI.OM=\(^{OA^2}\)=R​bình.​
  • c)
14 tháng 12 2023

a: Ta có: ΔOBM cân tại O

mà OH là đường cao

nên H là trung điểm của BM và OH là phân giác của góc MOB

Xét ΔOBN và ΔOMN có

OB=OM

\(\widehat{BON}=\widehat{MON}\)

ON chung

Do đó: ΔOBN=ΔOMN

=>\(\widehat{OBN}=\widehat{OMN}=90^0\)

=>NM là tiếp tuyến của (O)

b: Xét (O) có

ΔMAB nội tiếp

AB là đường kính

Do đó: ΔMAB vuông tại M

Xét (O) có

\(\widehat{MAB}\) là góc nội tiếp chắn cung MB

\(\widehat{MBN}\) là góc tạo bởi tiếp tuyến BN và dây cung BM

Do đó: \(\widehat{MAB}=\widehat{MBN}\)

=>\(\widehat{MAB}=\widehat{HBN}\)

Xét ΔMAB vuông tại M và ΔHBN vuông tại H có

\(\widehat{MAB}=\widehat{HBN}\left(cmt\right)\)

Do đó: ΔMAB đồng dạng với ΔHBN