K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5:

P/s: Tự vẽ hình nha bạn!!!~ :D

b) Theo câu a ta có: ΔABM=ΔACMB

=> ABMˆ=ACMˆABM^=ACM^

Mà: ABDˆ=180o−ABMˆ=180o−ACMˆ=ACEˆABD^=180o−ABM^=180o−ACM^=ACE^

Xét ΔABD và ΔACE có:

AB=AC (gt)

ABDˆ=ACEˆABD^=ACE^ (chứng minh trên)

BD=CE (gt)

=> ΔABD=ΔACE (c-g-c)

=> BADˆ=CAEˆBAD^=CAE^ (2 góc tương ứng)

Cũng theo câu a thì ΔABM=ΔACM

=> BAMˆ=CAMˆBAM^=CAM^

=> BAMˆ+BADˆ=CAMˆ+CAEˆBAM^+BAD^=CAM^+CAE^

=> DAMˆ=EAMˆDAM^=EAM^

=> AM là tia phân giác của góc DAE

                                                ~Học tốt!~

Trả lời

P/s: Hình bạn tự vẽ nhé (xin lỗi nha!~Câu trả lời trước của mk nó ko hiện công thức nên mong bạn gì đó thông cảm giúp mk nhé!!! (^-^)

Đề câu:Chứng minh: ABD = ACE. Từ đó suy ra AM là tia phân giác của góc DAE.

Vì AB = AC => ΔABC cân => B2ˆ=C1ˆB2^=C1^

Xét ΔABM và ΔACM có: AB = AC (gt) B2ˆ=C1ˆ(cmt)B2^=C1^(cmt) BM = CM (gt)

=> ΔABM = ΔACM(c.g.c) =>

AMBˆ=AMCˆAMB^=AMC^ (2 góc tương ứng)

mà AMBˆ+AMCˆ=180oAMB^+AMC^=180o (kề bù)

=> AMBˆ=AMCˆ=180o2=90oAMB^=AMC^=180o2=90o

=> AM ⊥⊥ BC(*)

b) Theo câu a ta có

: ΔABM=ΔACMB => ABMˆ=ACMˆ

Mà: ABDˆ=180o−ABMˆ=180o−ACMˆ=ACEˆ

Xét ΔABD và ΔACE có: AB=AC (gt) ABDˆ=ACEˆ (chứng minh trên)

BD=CE (gt) => ΔABD=ΔACE (c-g-c)

=> BADˆ=CAEˆ (2 góc tương ứng)

Cũng theo câu (*) thì ΔABM=ΔACM => BAMˆ=CAMˆ => BAMˆ+BADˆ=CAMˆ+CAEˆ => DAMˆ=EAMˆ

=> AM là tia phân giác của góc DAE

                                              ~Học tốt!~

25 tháng 12 2016

.

25 tháng 12 2016

.

10 tháng 12 2016

Hình bạn tự vẽ nhé leuleu

a) Xét ΔABM và ΔACM có:

AB=AC (gt)

AM là cạnh chung

BM=CN (M là trung điểm của BC)

=> ΔABM=ΔACM (c-c-c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)

=> \(\widehat{AMB}+\widehat{AMB}=180^o\)

=> \(\widehat{AMB}=90^o\)

=> AM vuông góc với BC

b) Theo câu a ta có: ΔABM=ΔACMB

=> \(\widehat{ABM}=\widehat{ACM}\)

Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)

Xét ΔABD và ΔACE có:

AB=AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)

BD=CE (gt)

=> ΔABD=ΔACE (c-g-c)

=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)

Cũng theo câu a thì ΔABM=ΔACM

=> \(\widehat{BAM}=\widehat{CAM}\)

=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)

=> \(\widehat{DAM}=\widehat{EAM}\)

=> AM là tia phân giác của góc DAE

11 tháng 12 2016

ohook

2 tháng 3 2020

a, xét tam giác AMB và tam giác AMC có : AM chung

BM = CM do M là trung điểm của BC (gt)

AB = AC (gt)

=> tam giác AMB = tam giác AMC (c-c-c)

=> góc AMB = góc AMC (đn)

mà góc AMB + góc AMC = 180 (kb)

=> góc AMB = 90

=> AM _|_ BC (đn)

b, góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc ABC + góc ABD = 180 (kb)

góc ACB + góc ACE = 180 (kb)

=> góc ABD = góc ACE 

xét tam giác ABD và tam giác ACE có : BD = CE (gt)

AB = AC (gt)

=> tam giác ABD = tam giác ACE (c-g-c)

2 tháng 3 2020

còn c với d bạn

12 tháng 11 2018

a) \(\Delta ABM\)và \(\Delta ACM\)

+ AB = AC(gt)

+ BM = CM(gt)

+ Chung AM 

Vậy \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

Suy ra \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)

=> \(180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABD\)và \(\Delta ACE\)

\(\widehat{ABD}=\widehat{ACE}\)

+ AB = AC (gt)

+BD = EC(gt)

\(\Rightarrow\Delta ABD=\Delta ACE \left(c.g.c\right)\)

12 tháng 11 2018

Xét \(\Delta AHB\)và \(\Delta AKC\)

+ AH = AK (gt)

+ AB = AC (gt)

\(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)

\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)

=> HB=CK ( hai cạnh tương ứng)

d) Vì O là giao điểm của HB và AM nên O,A,M nằm trên cùng một đường thẳng 

Nên \(\widehat{OAM}=\widehat{BAM}+\widehat{BAO}=\widehat{CAM}+\widehat{CAO}\)

\(\widehat{BAM}=\widehat{CAM}\)vì hai góc tương ứng (cmt)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)

Xét \(\Delta BAO=\Delta CAO\)

+ AB = CA (gt)

+ Chung AO

\(\widehat{BAO}=\widehat{CAO}\)(cmt)

\(\Delta BAO=\Delta CAO\left(c.g.c\right)\)

=>OB = OC (hai cạnh tương ứng)

12 tháng 12 2016

Ta có hình vẽ sau:

 

 

 

 

D E B M C 1 2 1 2 A

a) Vì AB = AC => ΔABC cân

=> \(\widehat{B_2}=\widehat{C_1}\)

Xét ΔABM và ΔACM có:

AB = AC (gt)

\(\widehat{B_2}=\widehat{C_1}\left(cmt\right)\)

BM = CM (gt)

=> ΔABM = ΔACM(c.g.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=\frac{180^o}{2}=90^o\)

=> AM \(\perp\) BC(đpcm)

b) Ta có: \(\widehat{B_2}=\widehat{C_1}\)\(\widehat{B_1}+\widehat{B_2}=180^o;\widehat{C_1}+\widehat{C_2}=180^o\)

=> \(\widehat{B_1}=\widehat{C_2}\)

Xét ΔABD và ΔACE có:

AB = AC(gt)

\(\widehat{B_1}=\widehat{C_2}\left(cmt\right)\)

BD = CE (gt)

=> ΔABD = ΔACE(c.g.c)

=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)

\(\widehat{BAM}=\widehat{CAM}\) (ΔABM = ΔACM)

=> \(\widehat{BAD}+\widehat{BAM}=\widehat{CAE}+\widehat{CAM}\)

=> AM là tia p/g của \(\widehat{DAE}\) (đpcm)

 

12 tháng 12 2016

phần c,d thỳ sao bn

a) Xét tam giác ABM và tam giác DCM có:
AM = DM (gt)
BM = MC (gt)
góc BMA = góc DMC (2 góc đối đỉnh)
=> tam giác ABM = tam giác DCM (c.g.c)
b) Vì tam giác ABM = tam giác DCM (cmt)
=> góc ABM = góc DCM (2 góc tương ứng)
mà 2 góc này so le trong
=> AB//DC
c) Xét tam giác ABM và tam giác ACM có:
AB = AC (gt)
BM = MC (gt
AM là cạnh chung
=> tam giác ABM bằng tam giác ACM (c.c.c)
=> góc BMA bằng góc AMC
=> góc BMA = góc AMC = 1/2(góc BMA + góc AMC)
mà góc BMA + góc AMC = 180o (2 góc kề bù)
=> góc BMA = góc AMC = 1/2.180o = 90o
=> AM vuông góc với BC

9 tháng 12 2018

Câu c) bạn ghi lại chính xác giúp!