K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBCE có

\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{HAC}\right)\)

Do đó: ΔBAD~ΔBCE

Xét ΔBHD vuông tại H và ΔBAE vuông tại A có

\(\widehat{HBD}=\widehat{ABE}\)

Do đó: ΔBHD~ΔBAE

c: ΔBAD~ΔBCE

=>\(\dfrac{AD}{CE}=\dfrac{BD}{BE}\left(1\right)\)

ΔBHD~ΔBAE

=>\(\dfrac{HD}{AE}=\dfrac{BD}{BE}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{AD}{CE}=\dfrac{HD}{AE}\)

=>\(\dfrac{AD}{DH}=\dfrac{CE}{AE}\)

=>\(\dfrac{HD}{DA}=\dfrac{EA}{EC}\)

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(\dfrac{BH}{3}=\dfrac{3}{5}\)

=>BH=9/5=1,8(cm)

BH+HC=BC

=>HC+1.8=5

=>HC=3,2(cm)

23 tháng 4 2024

Thank làm nhanh ghê

 

16 tháng 5 2017

A B D E C H

a) \(\Delta ABH,\Delta CBA\)có \(\widehat{ABC}\)chung ;\(\widehat{AHB}=\widehat{CAB}=90^0\)nên \(\Delta ABH~\Delta CBA\left(g-g\right)\)

b) Từ câu a,ta có \(\frac{BA}{BC}=\frac{BH}{BA}\)mà \(\frac{BA}{BC}=\frac{EA}{EC}\)(tính chất đường phân giác BE của \(\Delta ABC\))\(\Rightarrow\frac{EA}{EC}=\frac{BH}{AB}\)

c) Ta có : \(\frac{BA}{BC}=\frac{BH}{BA}\Rightarrow BH=\frac{BA^2}{BC}=\frac{25}{3}\)(cm)

\(\Delta AHB\)vuông tại H có \(AH=\sqrt{AB^2-BH^2}=\sqrt{100-\frac{625}{9}}=\frac{5\sqrt{11}}{3}\)(cm) (định lí Pi-ta-go)

Ta có : \(\frac{AD}{DH}=\frac{AB}{BH}\)(tính chất đường phân giác BD của \(\Delta ABH\))

\(\Rightarrow\frac{AD}{10}=\frac{DH}{\frac{25}{3}}=\frac{AD+DH}{10+\frac{25}{3}}=\frac{5\sqrt{11}}{3}:\frac{55}{3}=\frac{1}{\sqrt{11}}\)(cm) (tính chất dãy tỉ số bằng nhau)

\(\Rightarrow AD=\frac{10}{\sqrt{11}}\left(cm\right);DH=\frac{25}{3\sqrt{11}}\left(cm\right)\)

18 tháng 5 2017

Ái chà thời này toán học cao siêu quá còn có trường hợp bằng nhau của tam giác là góc góc :v

26 tháng 7 2018

a.Áp dụng hệ thức h^2=b'.c' vào tam giác vuông ABC ta có: AH^2=HB.HC(đpcm)

AH^2=HB.HC suy ra AH^2=1,8.3,2 suy ra AH^2=5,76 suy ra AH=2,4

S tam giác ABC=1/2 AH.(HB+HC)=1/2.2,4.5=6

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

=>ΔHBA đồng dạng với ΔABC

b; Xét ΔABE vuông tại A và ΔACB vuông tại A có

góc ABE=góc ACB

=>ΔABE đồng dạng với ΔACB

=>AB/AC=AE/AB

=>AB^2=AE*AC

c: Xét ΔBHD vuông tại H và ΔBAE vuông tại A có

góc HBD=góc ABE

=>ΔBHD đồng dạng với ΔBAE

27 tháng 1 2016

bạn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

du

9 tháng 5 2017

A) Xét   \(\Delta HBA\) và  \(\Delta ABC\) có :

\(\widehat{B}\) chung     ;     \(\widehat{BAC}=\widehat{BHA}=90\)  độ

\(\Leftrightarrow\Delta HBA\infty\Delta ABC\left(g.g\right)\)

B)  Xét \(\Delta ABE\) và \(\Delta ACB\) có : 

       \(\widehat{A}\)   chung

      \(\widehat{ABE}=\widehat{BCA}\)( Do BE là phân giác của góc B , mà   \(\widehat{B}=2\widehat{C}\))

\(\Leftrightarrow\Delta ABE\infty\Delta ACB\left(g.g\right)\)

Ta có tỉ lệ :  \(\frac{AB}{AC}=\frac{AE}{AB}\)\(\Leftrightarrow AB^2=AE\cdot AC\left(dpcm\right)\)

C)  ta có tỉ lệ :  \(\frac{HB}{AB}=\frac{AB}{BC}\)\(\Leftrightarrow HB=\frac{AB^2}{BC}=\frac{9}{6}=1,5\left(cm\right)\)

    Xét   \(\Delta BHD\) và  \(\Delta BAE\) có :

              \(\widehat{BHD}=\widehat{BAE}=90\)độ

              \(\widehat{ABE}=\widehat{EDH}\)( do BE là phân giác của góc B )

    \(\Leftrightarrow\Delta BHD\infty\Delta BAE\left(g.g\right)\)

Ta có tỉ lệ : \(\frac{BH}{AB}=\frac{HD}{AE}=\frac{BD}{BE}\)

    \(\Rightarrow\frac{S_{BHD}}{S_{BAE}}=\left(\frac{BH}{AB}\right)^2=\left(\frac{1,5}{3}\right)^2=\frac{1}{4}\)

BÀI NÀY MK TỪNG LÀM RÙI NÊN YÊN TÂM !!! NẾU THẤY ĐÚNG THÌ TK NKA !!!

9 tháng 5 2017

Hàng thứ 5 từ dười đếm lên bạn sửa lại giúp mk là   \(\widehat{ABE}=\widehat{EBH}\)mới đúng !!! thông cảm mk bị cận 

30 tháng 4 2017

a, Xét tg ABC và tg ABH:

H=B=90

 góc chung

=> tg ABC đồng dạng tg ABH

b, Vì tg ABC đồng dạng với tg ABH.

Nên: AB/AH=AC/AB

=>AB^2=AH.AC

=>AB^2=4.13

=>AB=7,2cm

c, Hình như đề sai.

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)