Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2008^2}\)
\(< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2007.2008}\)
\(=\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+...+\frac{2008-2007}{2007.2008}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2006}-\frac{1}{2007}\)
\(=\frac{1}{4}-\frac{1}{2007}< \frac{1}{4}\).
\(=3.\left(4a+12b\right)\)chia hết cho 3 vì có thừa số là 3.
b)\(2n+7=2n+2+5\)
\(=2.\left(n+1\right)+5\)
=>5 chia hết cho n+1.
n+1 thuộc 1;5
n thuộc 0;4.
Chúc em học tốt^^
Bài 1:
12a + 36b = 12.(a + 3b) = 3.4.(a + 3b) chia hết cho 3
=> 12a + 36b luôn chia hết cho 3 (Đpcm)
Bài 2:
2n + 7 chia hết cho n + 1
=> 2n + 2 + 5 chia hết cho n + 1
=> 2(n + 1) + 5 chia hết cho n + 1
Có 2(n + 1 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5)
=> n + 1 thuộc {1; -1; 5; -5}
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Mà n thuộc N
=> n thuộc {0; 4}
Gọi ba số tự nhiên liên tiếp lần lượt là n;n+1;n+2
Nếu n chia hết cho 3 thì bài toán luôn đúng.
Nếu n chia 3 dư 1 thì n = 3k + 1 (k thuộc N) => n + 2 = 3k + 1 + 2 = 3k+3 chia hết cho 3
Nếu n chia 3 dư 2 thì n = 3k+2 => n+1 = 3k + 2 + 1 = 3k+3 chia hết cho 3
Vậy tổng ba số tự nhiên liên tiếp luôn luôn chia hết cho 3
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
Ta có
\(\frac{1}{5^2}=\frac{1}{5.5}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}=\frac{1}{5}-\frac{1}{6}\)
\(\frac{1}{7^2}< \frac{1}{6.7}=\frac{1}{6}-\frac{1}{7}\)
.....
\(\frac{1}{2008^2}< \frac{1}{2007.2008}=\frac{1}{2007}-\frac{1}{2008}\)
\(\Rightarrow C=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2008^2}< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(\Rightarrow C< \frac{1}{4}-\frac{1}{2008}< \frac{1}{4}\)
Vậy \(C< \frac{1}{4}\)