Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x3 / xn+1
= 2/x3-n+1
= 2/x2-n
Để 2x3 chia hết cho xn+1 thì 2-n \(\ge\)0 <=> n \(\le\)2
b, ( 5x3 - 7x2 + x ) / 3xn
= 5/33-n - 7/32-n + 1/31-n
Để ( 5x3 - 7x2 + x ) chia hết cho 3xn thì 3 - n \(\ge\)0
2 - n \(\ge\)0
1 - n \(\ge\)0
<=> n \(\le\)3
n \(\le\) 2
n \(\le\) 1
<=> n \(\le\)1
Còn lại tương tự nha!
c, ( 13x4y3 - 5x3y3 + 6x2y2 ) / 5xnyn
d, ( 5x3 - 7x2 + x ) / 5xnyn
e, ( 13x4y3 - 5x3y3 + 6x2y2 ) / 5xnyn
a, 5x2 - 45x = 5x(x - 9)
b, 3x3y - 6x2y - 3xy3 - 6axy2 - 3a2xy + 3xy
= 3xy(x2 - 2x - y2 - 2ay - a2 + 1)
= 3xy[ (x2 - 2x + 1) - (a2 + 2ay + y2) ]
= 3xy[ (x - 1)2 - (a + y)2 ]
= 3xy(x - 1 + a + y)(x - 1 - a - y)
f, 3xy2 - 12xy + 12x
= 3x(y2 - 4y + 4)
= 3x(y - 2)2
g, 2x2 - 8x + 8
= 2(x2 - 4x + 4)
= 2(x - 2)2
h, 5x3 + 10x2y + 5xy2
= 5x( x2 + 2xy + y2 )
= 5x(x + y)2
k, x2 + 4x - 2xy - 4y + y2
= (x2 - 2xy + y2) + (4x - 4y)
= (x - y)2 + 4(x - y)
= (x - y)(x - y + 4)
i, x3 + ax2 - 4a - 4x
= (x3 - 4x) + (ax2 - 4a)
= x(x2 - 4) + a(x2 - 4)
= (x + a)(x2 - 4)
= (x + a)(x + 2)(x - 2)
Chúc bạn học tốt !
Câu 1:
a/ (-5x3)(2x2+3x-5)
=-10x5-15x4+25x3
b/(2x-1)x
=2x2-x
c/(x-y)(3x2+4xy)
=3x3+4x2y-3x2y-4xy2
=3x3 +x2y-4xy2
Câu 2:
a/ x3-2x2+x
=x(x2-2x+1)
=x(x-1)2
b/x2-x-12
=x2 +3x-4x-12
=(x2 +3x)+(-4x-12)
=x(x+3)-4(x+3)
=(x+3)(x-4)
c/ 2x-6
=2(x-3)
e/ x2+4x+4-y2
=(x2+4x+4)-y2
=(x+2)2-y2
=(x+2-y)(x+2+y)
d/ x2-2xy+y2-16
=(x2-2xy+y2)-16
=(x-y)2-16
=(x-y-4)(x-y+4)
Câu 3:
a: \(=\dfrac{5xy-4+3xy+4}{2x^2y^3}=\dfrac{8xy}{2x^2y^3}=\dfrac{4}{xy^2}\)
b: \(=\dfrac{y-12}{6\left(y-6\right)}+\dfrac{6}{y\left(y-6\right)}\)
\(=\dfrac{y^2-12y+36}{6y\left(y-6\right)}=\dfrac{y-6}{6y}\)
c: \(=\dfrac{3x+1-2x+3}{x+y}=\dfrac{x+4}{x+y}\)
d: \(=\dfrac{4x+7+5x+7}{9}=\dfrac{9x+14}{9}\)
e: \(=\dfrac{5\left(x+2\right)}{2\left(2x-1\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-5\left(x-2\right)}{2x-1}\)
1) \(-4x^5\left(x^3-4x^2+7x-3\right)\)
\(=-4x^8+16x^7-28x^6+12x^5\)
2) \(3x^4\left(-2x^3+5x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)
\(=-6x^7+15x^6-2x^5+x^4\)
3) \(-5x^2y^4\left(3x^2y^3-2x^3y^2-xy\right)\)
\(=-15x^4y^7+10x^5y^6+5x^3y^5\)
4) \(4x^3y^2\left(-2x^2y+4x^4-3y^2\right)\)
\(=-8x^5y^3+16x^7y^2-12x^3y^4\)
1) 4x\(^2\).(5x3+2x-1)
= 20x\(^5\)+8x\(^3\)-4x\(^2\).
2) 4x\(^3\): x2
= 4x
3) ( 15x2y3-10x3y3+6xy): 5xy
= 3xy2-2x2y2+\(\dfrac{6}{5}\)
4) (5x3+14x2+12x+8 ): (x+2)
= 5x2+4x+4
5)\(\dfrac{7}{2x}\)+\(\dfrac{11}{3y^2}\)
=\(\dfrac{7.3y^2+11.2x}{6xy^2}\) =\(\dfrac{21y^2+22x}{6xy^2}\) = \(\dfrac{21+22}{6}\) =\(\dfrac{43}{6}\)
6) \(\dfrac{x}{x+2}\) +\(\dfrac{3}{\left(x+2\right)\left(4x-7\right)}\)
7)\(\dfrac{3}{x-y}\)-\(\dfrac{2x^2}{x+y}\)
= \(\dfrac{3\left(x+y\right)-2\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{3x+3y-2x-2y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{1}{x-y}\).
8)\(\dfrac{1}{2}\)x2y2.(2x+y)(2x-y)
= \(\dfrac{1}{2}\)x2y2.(4x2-2xy+2xy-y2)
= \(\dfrac{1}{2}\)x2y2.(4x2-y2)
= 2x4y2-\(\dfrac{1}{2}\)x2y4
9) (x-\(\dfrac{1}{2}\)).(x+\(\dfrac{1}{2}\)).(4x-1)
= x2.(4x-1)
= 4x3-x2
10)\(\dfrac{3x}{2x+6}\)+\(\dfrac{6-x}{2x^2+6x}\)
= \(\dfrac{3x}{2\left(x+3\right)}\)+\(\dfrac{6-x}{2x\left(x+3\right)}\)= \(\dfrac{3x^2+6-x}{2x\left(x+3\right)}\)=\(\dfrac{3-x}{3}\)= -x
11) x2-\(\dfrac{1}{2x-2}\)+3x+\(\dfrac{3}{1-x^2}\)
12)\(\dfrac{x^2}{x^2-y^2}\)-\(\dfrac{x-y}{x^2-y^2}\)
= \(\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)= \(\dfrac{x}{x+y}\)
a) \(=\dfrac{5}{2}xy+\dfrac{3}{2}x^2\)
b) \(=-3y-2x^2\)
c) \(=x-\dfrac{3}{5}x^2z\)
d) \(=-\dfrac{5}{2}x^2z+4x^3\)