K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2021

a) \(\sqrt{x^2-x-4}=\sqrt{x-1}\)

\(x^2-x-4=x-1\)

\(x^2-x-4-x+1=0\)

\(x^2-2x-5=0\)

\(\left(x^2-2.x.1+1^2\right)-6=0\)

\(\left(x-1\right)^2=6\)

\(\left\{{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\)         ⇒\(\left\{{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)

18 tháng 10 2021

a: Ta có: \(\sqrt{4-3x}=8\)

\(\Leftrightarrow4-3x=64\)

\(\Leftrightarrow3x=-60\)

hay x=-20

b: ta có: \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)

\(\Leftrightarrow2\sqrt{x-2}-12\cdot\dfrac{\sqrt{x-2}}{3}=-1\)

\(\Leftrightarrow x-2=\dfrac{1}{4}\)

hay \(x=\dfrac{9}{4}\)

18 tháng 10 2021

\(\left\{{}\begin{matrix}8>0\left(luondung\right)\\4-3x=64\end{matrix}\right.\) \(\Leftrightarrow x=-20\left(ktm\right)\)

11 tháng 12 2023

a: \(x^2\cdot2\sqrt{3}+x+1=\sqrt{3}\cdot\left(x+1\right)\)

=>\(x^2\cdot2\sqrt{3}+x\left(1-\sqrt{3}\right)+1-\sqrt{3}=0\)

\(\text{Δ}=\left(1-\sqrt{3}\right)^2-4\cdot2\sqrt{3}\left(1-\sqrt{3}\right)\)

\(=4-2\sqrt{3}-8\sqrt{3}\left(1-\sqrt{3}\right)\)

\(=4-2\sqrt{3}-8\sqrt{3}+24=28-10\sqrt{3}=\left(5-\sqrt{3}\right)^2>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x_1=\dfrac{-\left(1-\sqrt{3}\right)-\left(5-\sqrt{3}\right)}{2\cdot2\sqrt{3}}=\dfrac{-1+\sqrt{3}-5+\sqrt{3}}{4\sqrt{3}}=\dfrac{1-\sqrt{3}}{2}\\x_2=\dfrac{-\left(1-\sqrt{3}\right)+5-\sqrt{3}}{2\cdot2\sqrt{3}}=\dfrac{4}{4\sqrt{3}}=\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)

b: \(5x^2-3x+1=2x+31\)

=>\(5x^2-3x+1-2x-31=0\)

=>\(5x^2-5x-30=0\)

=>\(x^2-x-6=0\)

=>(x-3)(x+2)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

c: \(x^2+2\sqrt{2}x+4=3\left(x+\sqrt{2}\right)\)

=>\(x^2+2\sqrt{2}x+4-3x-3\sqrt{2}=0\)

=>\(x^2+x\left(2\sqrt{2}-3\right)+4-3\sqrt{2}=0\)

\(\text{Δ}=\left(2\sqrt{2}-3\right)^2-4\left(4-3\sqrt{2}\right)\)

\(=17-12\sqrt{2}-16+12\sqrt{2}=1\)>0

Do đó, phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x_1=\dfrac{-\left(2\sqrt{2}-3\right)-1}{2}=\dfrac{-2\sqrt{2}+3-1}{2}=-\sqrt{2}+1\\x_2=\dfrac{-\left(2\sqrt{2}-3\right)+1}{2}=\dfrac{-2\sqrt{2}+4}{2}=-\sqrt{2}+2\end{matrix}\right.\)

11 tháng 12 2023

Alo anh ơi anh giúp em câu em mới đăng với ạ

NV
26 tháng 12 2020

a. ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)

\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)

Pt trở thành:

\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)

\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)

\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)

\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)

b.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)

Pt trở thành:

\(t=t^2-4-16\Leftrightarrow...\)

a:Ta có: \(\sqrt{2x+9}=\sqrt{5-4x}\)

\(\Leftrightarrow2x+9=5-4x\)

\(\Leftrightarrow6x=-4\)

hay \(x=-\dfrac{2}{3}\left(nhận\right)\)

b: Ta có: \(\sqrt{2x-1}=\sqrt{x-1}\)

\(\Leftrightarrow2x-1=x-1\)

hay x=0(loại)

c: Ta có: \(\sqrt{x^2+3x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2+3x=x\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

30 tháng 8 2021

a. \(\sqrt{2x+9}=\sqrt{5-4x}\)

<=> 2x + 9 = 5 - 4x 

<=> 2x + 4x = 5 - 9

<=> 6x = -4

<=> x = \(\dfrac{-4}{6}=\dfrac{-2}{3}\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

a. 

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-2\geq 0\\ x^2-2x+4=(2x-2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 3x^2-6x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 3x(x-2)=0\end{matrix}\right.\Leftrightarrow x=2\)

b. ĐK: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)+2\sqrt{x-1}+1}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}=2$

$\Leftrightarrow |\sqrt{x-1}+1|=2$

$\Leftrightarrow \sqrt{x-1}+1=2$
$\Leftrightarrow \sqrt{x-1}=1$

$\Leftrightarrow x=2$ (tm)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

c. 

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x+1=4x^2-4x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=2x(x-1)=0\end{matrix}\right.\Leftrightarrow x=1\) (tm)

d.

ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$
$\Leftrightarrow |\sqrt{x-4}+2|=2$

$\Leftrightarrow \sqrt{x-4}+2=2$

$\Leftrightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

a) Ta có: \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{x-1}+1+1\)(Vô lý)

Vậy: \(S=\varnothing\)

b) Ta có: \(\sqrt{x^4+2x^2+1}=\sqrt{x^2+10x+25}-10x+22\)

\(\Leftrightarrow x^2+1=\left|x+5\right|-10x+22\)

\(\Leftrightarrow\left|x+5\right|=x^2+1+10x-22=x^2+10x-21\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2+10x-21\left(x\ge-5\right)\\-x-5=x^2+10x-21\left(x< -5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+10x-21-x-5=0\\x^2+10x-21+x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+9x-26=0\\x^2+11x-16=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9+\sqrt{185}}{2}\\x=\dfrac{-11-\sqrt{185}}{2}\end{matrix}\right.\)

a:

ĐKXĐ: \(x>=-2\)

\(1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)

=>\(1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)

 

Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)(ĐK: a>0 và b>0)

Phương trình sẽ trở thành:

1+ab=a+b

=>ab-a-b+1=0

=>a(b-1)-(b-1)=0

=>(b-1)(a-1)=0

=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)

=>\(\left\{{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\)

=>\(x\in\varnothing\)

b: \(\sqrt{4x^2-2x+\dfrac{1}{4}}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x-\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\left|2x-\dfrac{1}{2}\right|=4x^3-x^2+8x-2\)(1)

TH1: x>=1/4

\(\left(1\right)\Leftrightarrow4x^3-x^2+8x-2=2x-\dfrac{1}{2}\)

=>\(4x^3-x^2+6x-\dfrac{3}{2}=0\)

=>\(x^2\left(4x-1\right)+1,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\left(x^2+1,5\right)=0\)

=>4x-1=0

=>x=1/4(nhận)

TH2: x<1/4

Phương trình (1) sẽ trở thành:

\(4x^3-x^2+8x-2=-2x+\dfrac{1}{2}\)

=>\(x^2\left(4x-1\right)+2\left(4x-1\right)+0,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\cdot\left(x^2+2,5\right)=0\)

=>4x-1=0

=>x=1/4(loại)

2:

ĐKXĐ: x>=3

 \(\Leftrightarrow\sqrt{x-3+2\cdot\sqrt{x-3}\cdot\sqrt{3}+3}+\sqrt{x-3-2\cdot\sqrt{x-3}\cdot\sqrt{3}+3}=2\sqrt{3}\)

=>\(\left|\sqrt{x-3}+\sqrt{3}\right|+\left|\sqrt{x-3}-\sqrt{3}\right|=2\sqrt{3}\)

\(\Leftrightarrow\sqrt{x-3}+\sqrt{3}+\left|\sqrt{x-3}-\sqrt{3}\right|=2\sqrt{3}\)

\(\Leftrightarrow\sqrt{x-3}+\left|\sqrt{x-3}-\sqrt{3}\right|=\sqrt{3}\)(1)

TH1: x>=6

(1) trở thành \(\sqrt{x-3}+\sqrt{x-3}-\sqrt{3}=\sqrt{3}\)

=>\(2\sqrt{x-3}=2\sqrt{3}\)

=>x-3=3

=>x=6(nhận)

TH2: 3<=x<6

Phương trình (1) sẽ là;

\(\sqrt{x-3}+\sqrt{3}-\sqrt{x-3}=\sqrt{3}\)

=>\(\sqrt{3}=\sqrt{3}\)(luôn đúng)

1:

\(A^2=8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{8^2-\left(2\sqrt{10+2\sqrt{5}}\right)^2}\)

\(=16+2\cdot\sqrt{64-4\cdot\left(10+2\sqrt{5}\right)}\)

\(=16+2\cdot\sqrt{24-8\sqrt{5}}\)

\(=16+2\cdot\sqrt{20-2\cdot2\sqrt{5}\cdot2+4}\)

\(=16+2\cdot\sqrt{\left(2\sqrt{5}-2\right)^2}\)

\(=16+2\cdot\left(2\sqrt{5}-2\right)=12+4\sqrt{5}\)

\(=10+2\cdot\sqrt{10}\cdot\sqrt{2}+2\)

\(=\left(\sqrt{10}+\sqrt{2}\right)^2\)

=>\(A=\sqrt{10}+\sqrt{2}\)