Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
\(1.\)
\(4x^2-4x-3\)
\(=4x^2-2x+6x-3\)
\(=2x\left(2x-1\right)+3\left(2x-1\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
\(2.\)
\(2x^2-5x-3\)
\(=2x^2-6x+x-3\)
\(=2x\left(x-3\right)+\left(x-3\right)\)
\(=\left(2x+1\right)\left(x-3\right)\)
\(3.\)
\(3x^2-5x-2\)
\(=3x^2+x-6x-2\)
\(=x\left(3x+1\right)-2\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x-2\right)\)
\(4.\)
\(2x^2+5x+2\)
\(=2x^2+4x+x+2\)
\(=2x\left(x+2\right)+\left(x+2\right)\)
\(=\left(2x+1\right)\left(x+2\right)\)
\(5.\)
\(6x^2-x-1\)
\(=6x^2-3x+2x-1\)
\(=2x\left(3x+1\right)-\left(3x+1\right)\)
\(=\left(2x-1\right)\left(3x+1\right)\)
\(6.\)
\(6x^2-6x-3\)
\(=3\left(2x^2-2x-1\right)\)
\(7.\)
\(15x^2-2x-1\)
\(=15x^2+3x-5x-1\)
\(=3x\left(5x+1\right)-1\left(5x+1\right)\)
\(=\left(5x+1\right)\left(3x-1\right)\)
\(8.\)
\(x^4-13x^2+36\)
\(=\left(x-3\right)\left(x^3+3x^2-4x-12\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x^2+5x+6\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)\)
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
Tìm x, biết:
1) 2x ( x - 5) - x ( 2x - 4 ) = 15
<=> 2x2 - 10x - 2x2 + 4x - 15 = 0
<=> -6x - 15 = 0
<=> -6x = 15
<=> x = -15/6
2) ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6
<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0
<=> -4x = -16
<=> x = 4
3) 4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x
<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0
<=> x + 4 = 0
<=> x = -4
4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5
<=> 2x2 + x + 6x + 3 - 2x2 - 4x + 5 = 0
<=> 3x + 8 = 0
<=> 3x = -8
<=> x = -8/3
5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0
<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0
.......
6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)
<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0
<=> -2x + 40 = 0
<=> -2x = -40
<=> x = 20
Còn lại tương tự ....
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
6. \(-2x^2+2x-4=-2\left(x^2-x+2\right)\)
\(=-2\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+2\right)\)
\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{2}\le\dfrac{-7}{2}< 0\)
-> ĐPCM.
7. 8. 9 Tương tự
10. \(6x^2+15x-21\)
\(=6\left(x^2+\dfrac{15}{6}x-\dfrac{7}{2}\right)\)
\(=6\left(x^2+2.x.\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{25}{16}-\dfrac{7}{2}\right)\)
\(=6\left[\left(x+\dfrac{5}{4}\right)^2-\dfrac{81}{16}\right]\)
\(=6\left(x+\dfrac{5}{4}\right)^2-\dfrac{243}{8}\)
\(=\dfrac{243}{8}-6\left(x+\dfrac{5}{4}\right)^2\)
....
1)
-2x2+2x-4
= -2(x2 -x +2)
= -2(x2 - 2.\(\dfrac{1}{2}\).x + \(\dfrac{1}{4}\)+\(\dfrac{7}{4}\))
= -2.(x-\(\dfrac{1}{2}\))2 - \(\dfrac{7}{2}\) \(\le\) - \(\dfrac{7}{2}\) với \(\forall\) x
=> -2x2+2x-4 luôn âm
=>đpcm
2)
-2x2 +6x -8
= -2 (x2 -3x + 4)
= -2(x2 - 2.\(\dfrac{3}{2}\).x +\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\))
= -2.(x-\(\dfrac{3}{2}\))2 - \(\dfrac{7}{2}\) \(\le\) - \(\dfrac{7}{2}\) với \(\forall\) x
=> -2x2 +6x -8 luôn âm
=>đpcm
3)
-x2 + 4x -1
= - (x2 - 4x +1)
= -(x2 - 2.2.x + 4 -3)
= -(x - 2)2 +3 \(\le\) 3 với \(\forall\) x
=> -x2 + 4x -1 có thể không âm
=> sai đề
4)
-2x2 +6x -12
= -2(x2- 3x + 6)
= -2(x2 - 2.\(\dfrac{3}{2}\).x + \(\dfrac{9}{4}+\dfrac{15}{4}\))
= -2(x-\(\dfrac{3}{2}\))2 - \(\dfrac{15}{2}\) \(\le\) - \(\dfrac{15}{2}\) với \(\forall\) x
=> -2x2 +6x -12 luôn âm
=>đpcm
5)
6x2 +15x - 21
= 6(x2 + 2.\(\dfrac{15}{2}\)x + \(\dfrac{225}{4}\)- \(\dfrac{309}{4}\))
= 6.(x-\(\dfrac{15}{2}\))2 - \(\dfrac{927}{2}\) \(\ge\) - \(\dfrac{927}{2}\) với \(\forall\) x
=> 6x2 +15x - 21 có thể không âm
=> đề sai