Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xét tam giác ABC có MA=MB
NA=NC
Nên MN // BC Hay MI // BP; NI //PC
Xét tam giác ABP có MI // BP; NA=NB Nên MI sẽ đi qua trung điểm AP hay AI=IP(T/C đường trung bình của tam giác)
b, ta có IM là đường trung bình của tam giác ABP (theo CM trên )
\(\Rightarrow MI=\frac{1}{2}BP\)(1)
ta có IN là đường trung bình của tam giác APC (vì AN=AC; IN//PC)
\(\Rightarrow IN=\frac{1}{2}BC\) (2)
Mà BP=PC ( do p là trung điểm của BC)
từ (1);(2);(3) suy ra MI=IN
c, ta có PABC=AB+BC+AC=54 (cm) (P là chu vi bạn nhé)
ta có NP =\(\frac{1}{2}AB\)do NA=NC;PC=PB nên NP là đường trung bình của tam giác ABC
tương tự ta có \(MN=\frac{1}{2}BC\)và \(MP=\frac{1}{2}AC\)
mặt khác PMNP=MN+NP+MP=\(\frac{1}{2}BC+\frac{1}{2}AB+\frac{1}{2}AC\)=\(\frac{1}{2}\left(BC+AB+AC\right)\)=\(\frac{1}{2}.54=27\)
Vậy chu vi tam giác MNP là 27cm
a: Xét ΔQMD có
N là trung điểm của MQ
I là trung điểm của MD
Do đó: NI là đường trung bình của ΔQMD
a: ND=DP=10/2=5cm
Xét ΔDMN có DE là phân giác
nên ME/EN=MD/DN=4/5
Xét ΔMDP có DF là phân giác
nên MF/FP=MD/DP=4/5
b: Xét ΔMNP có ME/EN=MF/FP
nên EF//NP
c: Xét ΔMKF và ΔMDP có
góc MKF=góc MDP
góc KMF chung
=>ΔMKF đồng dạng với ΔMDP
d: Xét ΔMND có EK//ND
nên EK/ND=MK/MD
Xét ΔMDP cóa KF//DP
nên KF/DP=MK/MD
=>EK/ND=KF/DP
=>EK=KF
=>K là trung điểm của EF
Ta có: D; E lần lượt là trung điểm của OA; OB
=> DE là đường trung bình của tam giác OAB
=> DE = 1/2 AB
Chứng minh tương tự: DF = 1/2 AC; EF = 1/2 BC
=> DE + DF + EF = 1/2 AB + 1/2 AC + 1/2 BC = 1/2 (AB + AC + BC) = 1/2 . 20 = 10 cm