Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o
(theo tính chất tổng hai góc nhọn trong tam giác vuông)
mà AHEˆ=BHDˆ(d.d)
nên EAHˆ=DBHˆ
Xét ΔAEH và ΔBEC ta có:
AH=BC(gt);EAHˆ=EBCˆ(cmt)
Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)
⇒AE=BE (cặp cạnh tương ứng)
mà AEBˆ=90o nên ΔAEB vuông cân tại E
⇒BAEˆ=45o (theo tính chất của tam giác giác vuông cân)
hay BACˆ=45o
Vậy .....
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Ta có:
EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o
(theo tính chất tổng hai góc nhọn trong tam giác vuông)
mà AHEˆ=BHDˆ(d.d)
nên EAHˆ=DBHˆ
Xét ΔAEH và ΔBEC ta có:
AH=BC(gt);EAHˆ=EBCˆ(cmt)
Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)
⇒AE=BE (cặp cạnh tương ứng)
mà AEBˆ=90o nên ΔAEB vuông cân tại E
⇒BAEˆ=45o (theo tính chất của tam giác giác vuông cân)
hay BACˆ=45o
Vậy .....
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
EB chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH; EA=EH
=>EB là trung trực của AH
c: EA=EH
mà EA<EK
nên EH<EK
d: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
mà BE là phân giác
nen BE vuông góc KC