Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhiều bài quá mình chỉ làm được bài 1,3,4,5
bài 2 mình đang suy nghĩ
bạn có thể vào để hỏi bài !
\(A=\left(2x-4\right)^2-4\left|4-2x\right|+1986=\left(2x-4\right)^2-4\left|2x-4\right|+1986\)
Ta thấy: \(\left|2x-4\right|^2=\left(2x-4\right)^2\)
Đặt t=|2x-4| ta được: t2=(2x-4)2
Suy ra: A=t2-4t+1986=t2-4t+4+1982
=(t-2)2+1982 \(\ge\)1982 (với mọi x)
Dấu "=" xảy ra khi: t=2
<=>|2x-4|=2
Với x\(\ge\)0 ta được: 2x-4=2 <=> x=3
Với x<0 ta được: 4-2x=-2 <=> x=3 (loại)
Vậy GTNN của A là 1982 tại x=3
12=22.3, 18=2.32, 27=33 nên BCNN(12,18,27)=22.33=108
a) Gọi x là số có 3 chữ số lớn nhất cần tìm, suy ra x chia hết cho 108
Suy ra x=108.k. Vì x có 3 chữ số nên x=108.k<1000 suy ra k lớn nhất là 9.
Vậy x=9.108=972
b) Gọi y là số có 4 chữ số cần tìm, suy ra y chia 108 dư 1
Suy ra y=108k+1. Vì y có 4 chữ số nên y=108k+1>999 suy ra k nhỏ nhất là 10.
Vậy y=10.108+1=1081
c) Gọi a là số 4 chữ số cần tìm, suy ra a=12k+10
suy ra a-16=12k-6=6(2k-1) chia hết cho 18. Suy ra 2k-1 chia hết cho 3.
Suy ra 2k-1-3=2(k-2) chia hết cho 3. Suy ra k=3m+2 nên a=12(3m+2)+10=36m+34
Lại có a-25=36m+9=9(4m+1) chia hết cho 27 nên 4m+1 chia hết cho 3
suy ra m+1 chia hết cho 3, suy ra m=3n+2. Suy ra a=36(3n+2)+34=108n+106
Vì a có 4 chữ số nên a=108n+106>999, suy ra n nhỏ nhất là 9.
Vậy a=108.9+106=1078
x^2-2xy+6^2-12x+2y+45 = x^2-2x(y+6)^2-(y+6)^2+6y^2+2y+45=(x-y-6)^2-y^2-12y-36+6y^2+2y+45=(x-y-6)^2+5y^2-10y+9=(x-y-6)^2+5(y^2-2y+1)+4=(x-y-6)^2+5(y-1)^2+4suy ra min=4 va(x,y)=(7,1)
P= \(\frac{2n+1}{n+1}\)= \(\frac{2n+2-1}{n+1}\) = \(\frac{2n+2}{n+1}\) - \(\frac{1}{n-1}\) = 2- \(\frac{1}{n-1}\)
a) Vì 2 thuộc Z nên để P thuộc Z thì \(\frac{1}{n-1}\) phải thuộc Z
=> 1 chia hết cho n-1 => n-1 thuộc Ư(1)={1;-1}
TH1:n-1=1 => n=2
TH2:n-1=-1 => n=0. Vậy n thuộc {2;0}
- b) Vì 2 thuộc Z nên để P có GTLN thì -\(\frac{1}{n-1}\) có GTLN => \(\frac{1}{n-1}\) có GTNN
Ta có: 1 thuộc Z và \(\frac{1}{n-1}\) có GTNN => n-1 là số nguyên âm lớn nhất => n-1=-1 => n=0
Khi đó, P= \(\frac{2.0+1}{0+1}\) = \(\frac{1}{1}\)= 1
- Vì 2 thuộc Z nên để P có GTNN thì - \(\frac{1}{n-1}\) có GTNN => \(\frac{1}{n-1}\) có GTLN
=> n-1 là số nguyên dương nhỏ nhất => n-1=1 => n=2
Khi đó, P= \(\frac{2.2+1}{2+1}\)= \(\frac{5}{3}\)
P thuộc Z khi: 2n+1 chia hết cho n+1
<=> 2n+2-1 chia hết cho n+1<=> 2(n+1)-1 chia hết cho n+1
<=> 1 chia hết cho n+1 (vì: 2(n+1) chia hết cho n+1)
<=> n+1 E {-1;1} <=> n E {-2;0}. Vậy: n E {-2;0} P/S: E là thuộc nha!
b)\(P=\frac{2n+1}{n+1}=\frac{2n+2-1}{n+1}=2-\frac{1}{n+1}\)
+)P lớn nhất khi n+1 là số nguyên âm lớn nhất => n+1=-1=>n=-2
Thay vào ta được:
\(P_{max}=2-\frac{1}{-1}=2-\left(-1\right)=3\)
+)P nhỏ nhất khi n+1 là số nguyên dương bé nhất=>n+1=1=>n=0
Thay vào ta được:
\(P_{min}=2-\frac{1}{1}=2-1=1\)
Đáp án C
Để đạt được 6 điểm thì thí sinh đó phải trả lời đúng 30 câu và trả lời sai 20 câu.
Xác suất trả lời đúng trong 1 câu là 0,25. Xác suất trả lời sai trong 1 câu là 0,75.
Vậy xác suất cần tìm là C 50 30 . 0 , 25 30 . 0 , 75 20 = C 50 20 . 0 , 25 30 . 0 , 75 20 .
\(2P=2x^2-2y^2-2xy-2x+2y+2\)
\(2P=\left(x-y\right)^2+\left(1-x\right)^2+\left(y+1\right)^2\)
Áp dụng BĐT Bunhiacopxki:
\(\left(1^2+1^2+1^2\right)\left[\left(x-y\right)^2+\left(1-x\right)^2+\left(y+1\right)^2\right]\ge\left(x-y+1-x+y+1\right)^2\)
\(3.2M\ge4\)
\(\Leftrightarrow M\ge\dfrac{2}{3}\)
Mmin\(=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{x-y}=\dfrac{1}{1-x}=\dfrac{1}{y+1}\)
\(\Leftrightarrow x=\dfrac{1}{3};y=\dfrac{-1}{3}\)
suy ra A=-1^1+2+3+....+2014
Ta có tổng 1+2+3+.....+2014
Nếu tổng 1+2+3+...+2014 chia hết cho 2 suy ra A=1
Nếu tổng 1+2+3+...+2014không chia hết cho 2 suy ra A=-1
tổng 1+2+3+.....+2014 có số hạng là: (2014-1)+1=2014(số hạng)
tổng 1+2+3+.....+2014 là:
(2014+1).2014:2=2029105
Vì 2029105 không chia hết cho 2 suy ra A=-1