Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)
\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)
b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)
\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)
c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)
d, \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)
\(=1+1+1\)
\(=3\)
e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)
\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)
\(=1+1+1\)
\(=3\)
a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)
\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)
b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)
\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)
c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)
d, \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)
\(=1+1+1\)
\(=3\)
e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)
\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)
\(=1+1+1\)
\(=3\)
a)\(=\dfrac{16}{13}-\dfrac{3}{15}+\dfrac{6}{13}=\dfrac{22}{13}-\dfrac{3}{15}=\dfrac{96}{65}\)
b)\(=\dfrac{21}{8}-\left(\dfrac{5}{10}+\dfrac{6}{10}\right)=\dfrac{21}{8}-\dfrac{11}{10}=\dfrac{61}{40}\)
c)\(=\dfrac{27}{10}-3-\dfrac{4}{7}--\dfrac{61}{70}\)
Tính nhanh mỗi biểu thức sau:
a, 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20
= (0 + 20) + (1 + 19) + (2 + 18) + (3 + 17) + (4 + 16) + (5 + 15) + (6 + 14) + (7 + 13) + (8 + 12) + (9 + 11) + 10
= 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 10
= 20 x 10 + 10
= 200 + 10
= 210
b, 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x (4 x 9 - 36)
= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x (36 - 36)
= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 0
= A x 0
= 0
c, (81 - 7 x 9 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= (81 - 63 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= (18 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= 0 :(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= 0 : A
= 0
d, (6 x 5 + 7 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= (30 + 7 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= (37 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= 0 x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= 0 x A
= 0
e, (11 x 9 - 100 + 1) : (1 x 2 x 3 x 4 x ... x 10)
= (99 - 100 + 1) : (1 x 2 x 3 x 4 x ... x 10)
= (99 + 1 - 100) : (1 x 2 x 3 x 4 x ... x 10)
= (100 - 100) : (1 x 2 x 3 x 4 x ... x 10)
= 0 : (1 x 2 x 3 x 4 x ... x 10)
= 0 : A
= 0
g, (m : 1 - m x 1) : (m x 2008 + m x 2008)
= (m - m) : (m x 2008 + m x 2008)
= 0 : (m x 2008 + m x 2008)
= 0 : A
= 0
h, (2 + 4 + 6 + 8 + m x n) x (324 x 3 - 972)
= (2 + 4 + 6 + 8 + m x n) x (972 - 972)
= (2 + 4 + 6 + 8 + m x n) x 0
= A x 0
= 0
l, (1 + 2 + 3 + ... + 99) x (13 x 15 - 12 x 15 - 15)
= (1 + 2 + 3 + ... + 99) x (15 x (13 - 12 - 1))
= (1 + 2 + 3 + ... + 99) x (15 x 0)
= (1 + 2 + 3 + ... + 99) x 0
= A x 0
= 0
i, (0 x 1 x 2 x...x 99 x 100) : (2 + 4 + 6 +...+ 98)
= 0 x : (2 + 4 + 6 +...+ 98)
= 0 x A
= 0
k, (0 + 1 + 2 +...+ 97 + 99) x (45 x 3 - 45 x 2 - 45)
= (0 + 1 + 2 +...+ 97 + 99) x (45 x (3 - 2 - 4))
= (0 + 1 + 2 +...+ 97 + 99) x (45 x 0)
= (0 + 1 + 2 +...+ 97 + 99) x 0
= A x 0
= 0
Bài 1:
\(\frac{1}{12},\frac{2}{3},\frac{3}{4},\frac{5}{6}\)
Bài 2:
A. \(\frac{11}{6}\)
B. \(\frac{3}{32}\)
C. \(\frac{1}{7}\)
D. \(\frac{15}{8}\)
Tích đúng cho mình nhé!
a.\(\dfrac{27}{8}\)
b.\(\dfrac{37}{40}\)
c.\(\dfrac{5}{2}\)
d.\(\dfrac{7}{3}\)
e.5
g.\(\dfrac{53}{16}\)
Bài 1 :
a) \(\dfrac{3}{2}+\dfrac{5}{4}+\dfrac{5}{8}=\dfrac{12}{8}+\dfrac{10}{8}+\dfrac{5}{8}=\dfrac{12+10+5}{8}=\dfrac{27}{8}\)
b) \(\dfrac{4}{5}-\dfrac{3}{8}+\dfrac{2}{4}=\dfrac{32}{40}-\dfrac{15}{40}+\dfrac{20}{40}=\dfrac{32-15+20}{40}=\dfrac{37}{40}\)
c) \(3+\dfrac{6}{8}-\dfrac{5}{4}=\dfrac{3}{1}+\dfrac{6}{8}-\dfrac{5}{4}=\dfrac{24}{8}+\dfrac{6}{8}-\dfrac{10}{8}=\dfrac{20}{8}=\dfrac{5}{2}\)
d) \(\dfrac{5}{6}-\dfrac{1}{2}+2=\dfrac{5}{6}-\dfrac{1}{2}+\dfrac{2}{1}=\dfrac{5}{6}-\dfrac{3}{6}+\dfrac{12}{6}=\dfrac{14}{6}=\dfrac{7}{3}\)
e) \(\dfrac{3}{5}+\dfrac{6}{11}+\dfrac{7}{13}+\dfrac{2}{5}+\dfrac{16}{11}+\dfrac{19}{13}=\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+\left(\dfrac{6}{11}+\dfrac{16}{11}\right)+\left(\dfrac{7}{13}+\dfrac{19}{13}\right)=1+2+2=5\)
g) \(\dfrac{75}{100}+\dfrac{18}{21}+\dfrac{29}{32}+\dfrac{1}{4}+\dfrac{3}{21}+\dfrac{13}{32}=\dfrac{3}{4}+\dfrac{6}{7}+\dfrac{29}{32}+\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{13}{32}=\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{6}{7}+\dfrac{1}{7}\right)+\left(\dfrac{29}{32}+\dfrac{13}{32}\right)=1+1+\dfrac{21}{16}=2+\dfrac{21}{16}=\dfrac{53}{16}\)