Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow P=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
\(\Rightarrow P=\frac{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11\left(\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)\right)}\)
\(\Rightarrow P=\frac{3}{11}\)
\(P=\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{13}}\)
\(P=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
\(P=\frac{3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}-\frac{1}{13}\right)}\)
\(P=\frac{3}{11}\)
\(P=\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{13}}\)
\(P=\frac{0,15+3\times\left(\frac{1}{7}+\frac{1}{13}\right)}{0,55+11\times\left(\frac{1}{7}+\frac{1}{13}\right)}\)
\(P=\frac{0,05\times3+3\times\left(\frac{1}{7}+\frac{1}{13}\right)}{0,05\times11+11\times\left(\frac{1}{7}+\frac{1}{13}\right)}\)
\(P=\frac{3\times\left(0,05+\frac{1}{7}+\frac{1}{13}\right)}{11\times\left(0,05+\frac{1}{7}+\frac{1}{13}\right)}\)
\(P=\frac{3}{11}\)
Ta có: \(A=\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{3}}=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{3}}=\frac{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{3}\right)}{11\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{3}\right)}=\frac{3}{11}\)
\(P=\frac{0.75-0.6+\frac{3}{7}+\frac{3}{13}}{2.75-2.2+\frac{11}{7}+\frac{11}{3}}\)
\(P=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
\(P=\frac{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{15}\right)}{11\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{15}\right)}\)
\(P=\frac{3}{11}\)
\(P=\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{13}}\)\(=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)\(=\frac{3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}\)\(=\frac{3}{11}\)
Tính nhanh \(A=\frac{0,75+0,6-\frac{3}{7}-\frac{3}{13}}{2,75+2,2-\frac{11}{7}-\frac{11}{13}}\)
Trả lời:
\(B=\frac{0,75-30\%+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+1\frac{4}{7}+3\frac{2}{3}}\)
\(B=\frac{\frac{3}{4}-\frac{3}{10}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{3}}\)
\(B=\frac{2019}{1820}\div\frac{2431}{420}\)
\(B=\frac{2019}{1820}\times\frac{420}{2431}\)
\(B=\frac{6057}{31603}\)
a) \(x+\frac{2}{3}=\frac{4}{5}\)
\(x=\frac{4}{5}-\frac{2}{3}\)
\(x=\frac{2}{15}\)
b) \(x-\frac{2}{7}=\frac{7}{21}\)
\(x=\frac{7}{21}+\frac{2}{7}\)
\(x=\frac{13}{21}\)
c) \(x-\frac{3}{4}=\frac{-8}{11}\)
\(x=\frac{-8}{21}+\frac{3}{4}\)
\(x=\frac{31}{84}\)
d) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{2}{5}\)
\(x=\frac{-3}{20}\)
\(P=\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{13}}\)
\(\Rightarrow P=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
\(\Rightarrow P=\frac{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}\)
\(\Rightarrow P=\frac{3}{11}\)
Vậy \(P=\frac{3}{11}\)
Bài 1:
\(P=\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{1}{7}+\frac{11}{13}}\)
\(=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}-\frac{11}{3}}\)
\(=\frac{3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}-\frac{1}{13}\right)}{11.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}-\frac{1}{13}\right)}=\frac{3}{11}\)
Bài 2:
a) \(\left(x+1\right)\left(x-2\right)< 0\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)=0\left(\text{loại}\right)\\\left(x-2\right)=0\end{cases}}\Rightarrow x=2\)