Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
\(x+2x+3x+4x+...+100x=10100\)
\(\left(1+2+3+4+...+100\right)x=10100\)
Đặt \(A=1+2+3+4+...+100\)
Số số hạng của A là:
\(\left(100-1\right):1+1=100\)(số)
Tổng của A là:
\(\dfrac{\left(1+100\right)\times100}{2}=5050\)
\(\Rightarrow5050x=10100\)
\(x=\dfrac{10100}{5050}\)
\(x=2\)
#DatNe
a: \(4x^3+12=120\)
=>\(4x^3=108\)
=>\(x^3=27=3^3\)
=>x=3
b: \(\left(x-4\right)^2=64\)
=>\(\left[{}\begin{matrix}x-4=8\\x-4=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-4\end{matrix}\right.\)
c: (x+1)^3-2=5^2
=>\(\left(x+1\right)^3=25+2=27\)
=>x+1=3
=>x=2
d: 136-(x+5)^2=100
=>(x+5)^2=36
=>\(\left[{}\begin{matrix}x+5=6\\x+5=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-11\end{matrix}\right.\)
e: \(4^x=16\)
=>\(4^x=4^2\)
=>x=2
f: \(7^x\cdot3-147=0\)
=>\(3\cdot7^x=147\)
=>\(7^x=49\)
=>x=2
g: \(2^{x+3}-15=17\)
=>\(2^{x+3}=32\)
=>x+3=5
=>x=2
h: \(5^{2x-4}\cdot4=10^2\)
=>\(5^{2x-4}=\dfrac{100}{4}=25\)
=>2x-4=2
=>2x=6
=>x=3
i: (32-4x)(7-x)=0
=>(4x-32)(x-7)=0
=>4(x-8)*(x-7)=0
=>(x-8)(x-7)=0
=>\(\left[{}\begin{matrix}x-8=0\\x-7=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x=7\end{matrix}\right.\)
k: (8-x)(10-2x)=0
=>(x-8)(x-5)=0
=>\(\left[{}\begin{matrix}x-8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=5\end{matrix}\right.\)
m: \(3^x+3^{x+1}=108\)
=>\(3^x+3^x\cdot3=108\)
=>\(4\cdot3^x=108\)
=>\(3^x=27\)
=>x=3
n: \(5^{x+2}+5^{x+1}=750\)
=>\(5^x\cdot25+5^x\cdot5=750\)
=>\(5^x\cdot30=750\)
=>\(5^x=25\)
=>x=2
\(\left(x+2\right)-2=0\)
\(\Rightarrow x+2-2=0\)
\(\Rightarrow x=0\)
\(\left(x+3\right)+1=7\)
\(\Rightarrow x+3+1=7\)
\(\Rightarrow x+4=7\)
\(\Rightarrow x=3\)
\(\left(3x-4\right)+4=12\)
\(\Rightarrow3x-4+4=12\)
\(\Rightarrow3x=12\)
\(\Rightarrow x=4\)
\(\left(5x+4\right)-1=13\)
\(\Rightarrow5x+4-1=13\)
\(\Rightarrow5x+3=13\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\)
\(\left(4x-8\right)-3=5\)
\(\Rightarrow4x-8-3=5\)
\(\Rightarrow4x-11=5\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
\(8-\left(2x+4\right)=2\)
\(\Rightarrow8-2x-4=2\)
\(\Rightarrow4-2x=2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
\(7+\left(5x+2\right)=14\)
\(\Rightarrow7+5x+2=14\)
\(\Rightarrow9+5x=14\)
\(\Rightarrow5x=5\)
\(\Rightarrow x=1\)
\(5-\left(3x-11\right)=1\)
\(\Rightarrow5-3x+11=1\)
\(\Rightarrow16-3x=1\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
a) |2x - 1| - 3 = 5
=> |2x - 1| = 8
Có 2 TH xảy ra:
TH1 : 2x - 1 = 8 => 2x = 9 => x = 9/2 (ko thỏa mãn x thuộc Z)
TH2 : -(2x - 1) = 8 => -2x + 1 = 8 => -2x = 9 => x = -9/2 (ko thỏa mãn x thuộc Z)
b) |3x - 5| = 4
Có 2 TH xảy ra :
TH1 : 3x - 5 = 4 => 3x = 9 => x = 3
TH2 : -(3x - 5) = 4 => -3x + 5 = 4 => -3x = -1 => x = 1/3 (ko thỏa mãn x thuộc Z)
c) |5x - 1| = |-3 - 3x|
Có 2 TH xảy ra :
TH1 : 5x - 1 = -3 - 3x => 5x + 3x = -3 + 1 => 8x = -2 => x = -1/4 (ko thỏa mãn x thuộc Z)
TH2 : 5x - 1 = -(-3 - 3x) => 5x - 1 = 3 + 3x => 5x - 3x = 3 +1 => 2x = 4 => x = 2
d) |4x - 8| = |x + 1|
Có 2 TH xảy ra :
TH1 : 4x - 8 = x + 1 => 4x - x = 1 + 8 => 3x = 9 => x = 3
TH2 : 4x - 8 = -(x + 10) => 4x - 8 = -x - 10 => 4x + x = -10 + 8 => 5x = -2 => x = -2/5 (ko thỏa mãn x thuộc Z)
e) |3x - 5| - |4x + 9| = 0
=> |3x - 5| = |4x + 9|
Có 2 TH xảy ra :
TH1 : 3x - 5 = 4x + 9 => 3x - 4x = 9 + 5 => -x = 14 => x = -14
TH2 : 3x - 5 = -(4x + 9) => 3x - 5 = -4x - 9 => 3x + 4x = -9 + 5 => 7x = -4 => x = -4/7 (ko thỏa mãn x thuộc Z)
x + 2x + 3x + ... + 100x = 5050
x ( 1 + 2 + 3 + ... + 100 ) = 5050
x { ( 100 + 1 ) . [ ( 100 - 1 ) : 1 + 1 ] : 2 } = 5050
x { 101 . 100 : 2 } = 5050
x . 5050 = 5050
x = 5050 : 5050
x = 1
b ) ( x + 2 ) + ( x + 4 ) + ( x + 6 ) + ... + ( x + 100 ) = 2650
Số số hạng cũng là số x :
( 100 - 2 ) : 2 + 1 = 50 ( số )
x . 50 + ( 2 + 4 + 6 + ... + 100 ) = 2650
x . 50 + [ ( 100 + 2 ) . 50 : 2 ] = 2650
x . 50 + 2550 = 2650
x . 50 = 2650 - 2550
x . 50 = 100
x = 100 : 50
x = 2
a)<=> 3x-5-x=0
<=> 2x-5=0
<=> x=5/2
c) x.(1+2+3+4+...+100)=0
x.5050=0
x=0:5050=0
Vậy x=0
d) x.(1+2+3+4+5+...+100)=5050
x.5050=5050
x=1
Vậy x=1
e) x+1+x+2+x+3+x+4+...+x+100=5050
(x+x+x+x+...+x)+(1+2+3+4+...+100)=5050
100 số hạng x
x.100+5050=5050
x.100=0
x=0
Vậy x=0