Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{12}\)
\(=\frac{4}{\sqrt{5}-\sqrt{3}}-2\sqrt{3}\)
\(=\frac{4\sqrt{5}+4\sqrt{3}}{\sqrt{5^2}-\sqrt{3^2}}-2\sqrt{3}\)
\(=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-2\sqrt{3}\)
\(=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{2}-2\sqrt{3}\)
\(=2\left(\sqrt{5}+\sqrt{3}\right)-2\sqrt{3}\)
\(=2\sqrt{5}+2\sqrt{3}-2\sqrt{3}\)
\(=2\sqrt{5}\)
b) \(\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}\)
\(=\frac{3}{2\sqrt{2}}-\frac{7}{\sqrt{2}}+\frac{5}{3\sqrt{2}}\)
\(=\frac{3\sqrt{2}}{2.2}-\frac{7}{\sqrt{2}}+\frac{5\sqrt{2}}{3.2}\)
\(=\frac{3\sqrt{2}}{4}-\frac{7}{\sqrt{2}}+\frac{5\sqrt{2}}{6}\)
\(=-\frac{23\sqrt{2}}{12}\)
chung ta den bai 2 :3
a) \(\frac{x}{\sqrt{x}-2}=-1\)
\(\Leftrightarrow x=-\sqrt{x}+2\)
\(\Leftrightarrow x-2=-\sqrt{x}\)
bình phương 2 vế ta được:
\(\Leftrightarrow x^2-4x+4=x\)
\(\Leftrightarrow x^2-4x+4-x=0\)
\(\Leftrightarrow x^2-5x+4=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
b) \(\sqrt{x-2}=x-4\)
chúng ta lại bình phương hai vế như câu a và chúng ta được:
\(\Leftrightarrow x-2=x^2-8x+16\)
\(\Leftrightarrow x-2-x^2+8x-16=0\)
\(\Leftrightarrow9x-18-x^2=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=3\end{cases}}\)
a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= \(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= -2
b); c); d) làm tương tự
Bài 1 :
a) \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{12}=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}-\sqrt{4.3}=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-2\sqrt{3}=2\left(\sqrt{5}+\sqrt{3}\right)-2\sqrt{3}=2\sqrt{5}\)
b) \(\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}=\frac{\sqrt{9}}{\sqrt{4.2}}-\frac{\sqrt{49}}{\sqrt{2}}+\frac{\sqrt{25}}{\sqrt{9.2}}\)
\(=\frac{3}{2\sqrt{2}}-\frac{7}{\sqrt{2}}+\frac{5}{3\sqrt{2}}\)
\(=\frac{1}{\sqrt{2}}\left(\frac{3}{2}-7+\frac{5}{3}\right)\)
\(=\frac{1}{\sqrt{2}}.\left(-\frac{23}{6}\right)\)
\(=-\frac{23}{6\sqrt{2}}=-\frac{23\sqrt{2}}{12}\)
Bài 2 :
a) \(\frac{x}{\sqrt{x}-2}=-1\) (ĐKXĐ : \(x\ge0;x\ne4\))
\(\Leftrightarrow x=-\sqrt{x}+2\)
\(\Leftrightarrow x+\sqrt{x}-2=0\)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\)
Ta có : t2 + t - 2 = 0
........ (Tìm t -> thay vào để tìm x -> đối chiếu với đkxđ -> kết luận)
b) \(\sqrt{x-2}=x-4\) (ĐKXĐ : \(x\ge4\))
\(\Leftrightarrow x-2=\left(x-4\right)^2\)
\(\Leftrightarrow x-2=x^2-8x+16\)
\(\Leftrightarrow x^2-8x+16-x+2=0\)
\(\Leftrightarrow x^2-9x+18=0\)
........ (Tìm x -> đối chiếu với đkxđ -> kết luận)
1) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)
\(=2\sqrt{5}-\sqrt{5^2.5}-\sqrt{4^2.5}+\sqrt{11^2.5}\)
\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)
\(=4\sqrt{5}\)
2) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-\sqrt{6^2.6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-6\sqrt{6}+3^2}+\sqrt{\left(2\sqrt{6}\right)^2-12\sqrt{6}+3^2}\)
\(=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|\sqrt{6}-3\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vi \(\sqrt{6}-3< 0\))
\(=\sqrt{6}\)
5) \(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)
\(=2\frac{4}{\sqrt{3}}-3.\frac{1}{3}-6\sqrt{\frac{2^2}{3.5^2}}\)
\(=\frac{8\sqrt{3}}{3}-1-6.\frac{2}{5}.\sqrt{\frac{1}{3}}\)
\(=8\frac{\sqrt{3}}{3}-1-\frac{12}{5}.\frac{\sqrt{3}}{3}\)
\(=\frac{28}{5}.\frac{\sqrt{3}}{3}-1\)
Báo cáo sai phạm
1) 2√5−√125−√80+√605
=2√5−√52.5−√42.5+√112.5
=2√5−5√5−4√5+11√5
=4√5
2) √15−√216+√33−12√6
=√15−√62.6+√33−12√6
=√15−6√6+√33−12√6
=√(√6)2−6√6+32+√(2√6)2−12√6+32
=√(√6−3)2+√(2√6−3)2
=|√6−3|+|2√6−3|
=3−√6+2√6−3 ( vi √6−3<0)
=√6
5) 2√163 −3√127 −6√475
=24√3 −3.13 −6√223.52
=8√33 −1−6.25 .√13
=8√33 −1−125 .√33
=285 .√33 −1
a/ Đề sai
b/ \(\sqrt{125}-4\sqrt{45}+3\sqrt{2}-\sqrt{80}=5\sqrt{5}-12\sqrt{5}+3\sqrt{2}-4\sqrt{5}\)
\(=-11\sqrt{5}+3\sqrt{2}\)
c/ \(2\sqrt{\frac{27}{4}}-\sqrt{\frac{48}{9}}-\frac{2}{5}\sqrt{\frac{75}{16}}=2.\frac{3\sqrt{3}}{2}-\frac{4\sqrt{3}}{3}-\frac{2}{5}.\frac{5\sqrt{3}}{4}\)
\(=3\sqrt{3}-\frac{4\sqrt{3}}{3}-\frac{\sqrt{3}}{2}=\sqrt{3}\left(3-\frac{4}{3}-\frac{1}{2}\right)=\frac{7\sqrt{3}}{6}\)
d/ \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\cdot\sqrt{11}+3\sqrt{22}=33-3\sqrt{22}-11+3\sqrt{22}=22\)