\(A=2019\times2020\)và \(B=2020^2\times2019^2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

\(A=2019x2020\)và \(B=2020^2\)\(x2019^2\)

DỄ THÔI BN Ạ

B =2020 . 2020 . 2019 . 2019

SUY RA A <B

20 tháng 6 2021

Ta có A = 2018.2020 + 2019.2021

= (2020 - 2).2020 + 2019.(2019 + 2) 

= 20202 - 2.2020 + 20192 + 2.2019

= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B

=> A = B

b) Ta có B = 964 - 1= (932)2 - 12 

= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1) 

  (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80 

mà A =   (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10

=> A < B

20 tháng 6 2021

c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)

=> A < B

d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)

=> A < B

22 tháng 8 2019

a)

\(A=\frac{2020^3+1}{2020-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020-2020+1}\) \(=2020+1=2021\)

b)

B = \(\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\) \(=2020-1=2019\)

22 tháng 8 2019

a. \(A=\frac{2020^3+1}{2020^2-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020^2-2020+1}=2020+1=2021\)

b. \(B=\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}=2020-1=2019\)

14 tháng 10 2019

\(A=\left(2018-2016\right)\left(2018+2016\right)=2.4034\)

\(B=\left(2019-2017\right)\left(2019+2017\right)=2.4036\)

Ta thấy 4034 < 4036 nên A < B.

14 tháng 10 2019

\(A=2018^2-2016^2=\left(2018+2016\right)\left(2018-2016\right)=4034.2\)

\(B=2019^2-2017^2=\left(2019+2017\right)\left(2019-2017\right)=4036.2\)

Vì 4036 > 4034 nên 4036 . 2 > 4034 . 2 nên B > A

20 tháng 10 2019

<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)

a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3

A= 12017 + 02018 + (-1)2019 = 0

11 tháng 2 2020

1.Tìm điều kiện xác định của phương trình:

a) 1x2+11x2+1 -4xx4xx =0 (1)

b) 1x211x21 -2020 (2)

c) x2020x2019x2020x2019 + x2021x2+1 (2)

Giải:

a) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x

Vậy điều kiện để phương trình (1) xác định là x ≠ 0.

b) Để phương trình (2) xác định thì x2 - 1 ≠ 0 ⇔ (x + 1)(x - 1) ≠ 0

\(\left[{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\) ⇔ x ≠ \(\pm\) 1

Vậy điều kiện để phương trình (2) xác định là x ≠ \(\pm\) 1.

c) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x

Vậy điều kiện để phương trình (3) xác định là x ≠ 2019.

11 tháng 2 2020

cảm ơn bạn nha .ha

4 tháng 10 2020

Ta có: \(a+b+c=3\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

\(\Rightarrow2\left(ab+bc+ca\right)=9-\left(a^2+b^2+c^2\right)=6\Rightarrow ab+bc+ca=3\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

Mà a + b + c = 3 nên a = b = c = 1

Suy ra \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)