Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=a\left(a-3\right)+15\)
với a=3n=>\(\hept{\begin{cases}a\left(a-3\right)⋮9\\15:9du6\end{cases}\Rightarrow A}\)không chia hết cho 9
Với a=3n+1=> A=3n(3n-2)=9n^2-6n+15=9(n^2+1)-6(n-1) vậy nếu n=10 chia hết cho 9=> Đề sai
moi a thuoc Z, ta cho A = {-1;0;1}
a) {(-1)-1}*{(-1)+2}+12 = 10 k la boi cua 9
( 0 - 1 ) * ( 0+2)+12=10 k la boi cua 9
(1-1) * ( 1 + 2 ) + 12 = 12 k la boi cua 9
b){ ( -1) + 2 } * { ( -1 + 9 } + 21 = 29 k la boi cua 49
(0+2)*(0+9)+21=39 k la boi cua 49
(1+2)*(1+9)+21=51 k la boi cua 49
nho chon cau tra loi cua mik nha
Bài a. Giả sử có số nguyên a đề (a-1)(a+2) +12 là bội của 9
Khi đó (a-1)(a+2) +12 = a2 + a + 10 = a2 + a + 1 + 9 chia hết cho 9
Hay a2 + a + 1 = 9k suy ra 4a2 + 4a + 4 = 36k
(2a+1)2 = 36k - 3 = 3 (12k - 1)
suy ra 12k - 1 chia hết cho 3 (vô lý)
Vậy.....không là bội của 9
\(\text{Giả sử:}\left(a-1\right)\left(a+2\right)+12\text{ là bội của 9}\Rightarrow a^2+a+10\text{ là bội của 9}\Leftrightarrow a^2+a+1⋮9\)
\(\text{Giả sử:}a\left(a+1\right)+1⋮9\Rightarrow a^2+a=9k+8\left(\text{ k nguyên}\right)\)
mặt khác: a(a+1) chia 9 có thể 1 trong các số dư: 0.1;1.2;2.3;3.4;4.5;5.6;6.7;7.8;9.0 tức là:
0;2;6;3 khác 8.
Ta có điều phải chứng minh
\(\left(a+2\right)\left(a+9\right)+21⋮49\Leftrightarrow a^2+11a+39⋮49\Leftrightarrow a^2+11a-10⋮49\)
\(\Leftrightarrow\left(a+2\right)^2-14⋮49\Leftrightarrow\frac{\left(a+2\right)^2}{7}-2⋮7\Leftrightarrow\left(a+2\right)^2⋮7\Leftrightarrow\left(a+2\right)^2⋮49\Rightarrow\frac{\left(a+2\right)^2}{7}-2⋮̸7̸\)
\(\text{vô lí nên ta có điều phải chứng minh}\)