K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

c2

XÉT \(BC+AH>AB+AC\)

BÌNH PHƯƠNG CẢ VẾ TA CÓ

\(\Rightarrow\left(BC+AH\right)^2>\left(AB+AC\right)^2\)

\(\Rightarrow BC^2+2BC.AH+AH^2>AB^2+2AB.AC+AC^2\)

MÀ \(AB^2+AC^2=BC^2\left(PYTAGO\right)\)

\(2S_{ABC}=AH.BC=AB.AC\)

\(\Rightarrow AH^2>0\)(ĐÚNG) 

=> đpcm

6 tháng 8 2020

vì H là hình chiếu của điểm A trên đường thẳng BC 

=> AH LÀ ĐƯỜNG CAO CỦA \(\Delta ABC\)VUÔNG TẠI 

vẽ thêm AE LÀ PHÂN GIÁC CỦA \(\widehat{HAC}\),KẺ \(EF\perp AC\)

XÉT HAI TAM GIÁC VUÔNG  \(\Delta AHE\)VÀ \(\Delta AFE\)CÓ AE LÀ CẠNH CHUNG ; \(\widehat{HAE}=\widehat{FAE}\)(CÁCH VẼ)

\(\Rightarrow\Delta AHE=\Delta AFE\left(ch-gn\right)\)

\(\Rightarrow AH=AF\)

MÀ DỄ THẤY \(FC< EC\)( QUAN HỆ ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN )

XÉT \(\Delta EAH\)VUÔNG TẠI H

TA CÓ \(\widehat{BEA}=90^o-\widehat{EAH}\)

          \(\widehat{BAE}=90^o-\widehat{EAF}\)

MÀ \(\widehat{HAE}=\widehat{FAE}\)( CÁCH VẼ )

\(\Rightarrow\widehat{BEA}=\widehat{BAE}\)

\(\Rightarrow\Delta BAE\)CÂN TẠI B 

=> AB = AE

TỪ CÁC CHỨNG MINH TRÊN TA CÓ 

\(\Leftrightarrow AB+AF+FC< BE+AH+EC\)

\(\Leftrightarrow BC+AH>AB+AC\)

\(\Rightarrow AH+BC>AB+AC\left(đpcm\right)\)

12 tháng 3 2017

đề sai. 

CHỈ CÓ THỂ AH+AB < AB+AC

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC
b: Xét ΔMBC có

MH vừa là đường cao, vừa là trung tuyến

=>ΔMBC cân tại M

c: Xét ΔAIH vuông tại I và ΔAKH vuông tại K co

AH chung

góc IAH=góc KAH

=>ΔAIH=ΔAKH

=>HI=HK

d: AI=AK

HI=HK

=>AH là trung trực của IK

14 tháng 5 2021

undefined

14 tháng 5 2021

Xét ΔHAM và ΔKCM có:

góc MHA = góc MKC (=90 độ)

AM = CM (gt)

góc AMH = góc CMK (2 góc đối đỉnh)

⇒ ΔHAM = ΔKCM (canh huyền-góc nhọn)

 

a: AC=căn 10^2-6^2=8cm

AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE

=>BD là trung trực của AE