Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c2
XÉT \(BC+AH>AB+AC\)
BÌNH PHƯƠNG CẢ VẾ TA CÓ
\(\Rightarrow\left(BC+AH\right)^2>\left(AB+AC\right)^2\)
\(\Rightarrow BC^2+2BC.AH+AH^2>AB^2+2AB.AC+AC^2\)
MÀ \(AB^2+AC^2=BC^2\left(PYTAGO\right)\)
\(2S_{ABC}=AH.BC=AB.AC\)
\(\Rightarrow AH^2>0\)(ĐÚNG)
=> đpcm
vì H là hình chiếu của điểm A trên đường thẳng BC
=> AH LÀ ĐƯỜNG CAO CỦA \(\Delta ABC\)VUÔNG TẠI
vẽ thêm AE LÀ PHÂN GIÁC CỦA \(\widehat{HAC}\),KẺ \(EF\perp AC\)
XÉT HAI TAM GIÁC VUÔNG \(\Delta AHE\)VÀ \(\Delta AFE\)CÓ AE LÀ CẠNH CHUNG ; \(\widehat{HAE}=\widehat{FAE}\)(CÁCH VẼ)
\(\Rightarrow\Delta AHE=\Delta AFE\left(ch-gn\right)\)
\(\Rightarrow AH=AF\)
MÀ DỄ THẤY \(FC< EC\)( QUAN HỆ ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN )
XÉT \(\Delta EAH\)VUÔNG TẠI H
TA CÓ \(\widehat{BEA}=90^o-\widehat{EAH}\)
\(\widehat{BAE}=90^o-\widehat{EAF}\)
MÀ \(\widehat{HAE}=\widehat{FAE}\)( CÁCH VẼ )
\(\Rightarrow\widehat{BEA}=\widehat{BAE}\)
\(\Rightarrow\Delta BAE\)CÂN TẠI B
=> AB = AE
TỪ CÁC CHỨNG MINH TRÊN TA CÓ
\(\Leftrightarrow AB+AF+FC< BE+AH+EC\)
\(\Leftrightarrow BC+AH>AB+AC\)
\(\Rightarrow AH+BC>AB+AC\left(đpcm\right)\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: Xét ΔMBC có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMBC cân tại M
c: Xét ΔAIH vuông tại I và ΔAKH vuông tại K co
AH chung
góc IAH=góc KAH
=>ΔAIH=ΔAKH
=>HI=HK
d: AI=AK
HI=HK
=>AH là trung trực của IK
a: AC=căn 10^2-6^2=8cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE