BÀI 1:Cho hình thang vuông ABCD có góc A=góc= 90 độ và AB=AD=CD/2, kẻ BH vuông góc với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

giúp mình với ạ, mình đang cần gấp

7 tháng 11 2021

ABCDMNIKH

a) Vì tứ giác ANDM có:

^A=90 độ ( t/g ABC vuông tại A)

^AMD=90 độ (M là hình chiếu của D trên AB)

^AND=90 độ (N là hình chiếu của D trên AC)

=> ANDM là hình chữ nhật ( vì có 3 góc _|_)

b) Vì:KD=DN (K đối xứng với N)

       ID=DM (I đối xứng với M)

=> KN_|_MI;IM_|_KN

Do đó: MNKI là hình thoi (hai đường chéo _|_ vs nhau)

c)  MHN mình vẽ sai bạn vẽ lại nhé

Ta có ^A=90 độ ( t/g ABC vuông)=>^NHA=\(\frac{\widehat{A}}{2}=\frac{90^o}{2}=45^o\left(1\right)\)

Mặt khác: AH đường cao=> ^H=90 độ=>^MHA=\(\frac{\widehat{H}}{2}=\frac{90^o}{2}=45^o\left(2\right)\)

Cộng (1) với (2)

=> ^NHA+^MHA=^MHN

=>45 độ + 45 độ =^MHN

=>^MHN=90 độ 

Vậy ^MHN=90 độ

13 tháng 12 2020

A B C H K I F E

a) Tứ giác AHKI là hình vuông \(\Rightarrow S_{AHKI}=AH^2=2^2=4\left(cm^2\right)\)

b) Xét \(\Delta ABH\)và \(\Delta AFI\)có:

 +) \(\widehat{AIF}=\widehat{AHB}=90^o\)

+) \(AH=AI\)( vì \(AHKI\)là hình vuông )

+) \(\widehat{BAH}=\widehat{IAF}\)( cùng phụ với \(\widehat{HAC}\))

\(\Rightarrow\Delta ABH=\Delta AFI\left(g.c.g\right)\)\(\Rightarrow AB=AF\)

Xét tứ giác \(ABEF\)có: \(BE//AF\)\(AB//EF\)\(\widehat{BAC}=90^o\)\(AB=AF\)

\(\Rightarrow ABEF\)là hình vuông ( đpcm )

14 tháng 8 2021

A B C H I D O

a, H là trực tâm của tg ABC => BH _|_ AC mà CD _|_ AC => BH // DC

                                                  CH _|_ AB mà BD _|_ AB => CH // BD

=> BHCD là hình bình hành

b, BHCD là hbh (Câu a) => BC cắt HD tại trung điểm của mỗi đường

mà có I là trung điểm của BC )gt-

=> I là trung điểm của HD

=> H;I;D thẳng hàng

c, xét tam giác AHD có : H là trung điểm của HD và o là trung điểm của AD

=> OI là đường trung bình của tam giác AHD

=> OI = AH/2

=> 2OI = AH

d, đang nghĩ

a) Tứ giác BHCDBHCD có:
BH//DC  (do cùng ⊥AC
CH//BD   (do cùng ⊥AB
⇒BHCD là hình bình hành (