Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H I D O
a, H là trực tâm của tg ABC => BH _|_ AC mà CD _|_ AC => BH // DC
CH _|_ AB mà BD _|_ AB => CH // BD
=> BHCD là hình bình hành
b, BHCD là hbh (Câu a) => BC cắt HD tại trung điểm của mỗi đường
mà có I là trung điểm của BC )gt-
=> I là trung điểm của HD
=> H;I;D thẳng hàng
c, xét tam giác AHD có : H là trung điểm của HD và o là trung điểm của AD
=> OI là đường trung bình của tam giác AHD
=> OI = AH/2
=> 2OI = AH
d, đang nghĩ
a) Tứ giác BHCDBHCD có:
BH//DC (do cùng ⊥AC
CH//BD (do cùng ⊥AB
⇒BHCD là hình bình hành (
ABCDMNIKH
a) Vì tứ giác ANDM có:
^A=90 độ ( t/g ABC vuông tại A)
^AMD=90 độ (M là hình chiếu của D trên AB)
^AND=90 độ (N là hình chiếu của D trên AC)
=> ANDM là hình chữ nhật ( vì có 3 góc _|_)
b) Vì:KD=DN (K đối xứng với N)
ID=DM (I đối xứng với M)
=> KN_|_MI;IM_|_KN
Do đó: MNKI là hình thoi (hai đường chéo _|_ vs nhau)
c) MHN mình vẽ sai bạn vẽ lại nhé
Ta có ^A=90 độ ( t/g ABC vuông)=>^NHA=\(\frac{\widehat{A}}{2}=\frac{90^o}{2}=45^o\left(1\right)\)
Mặt khác: AH đường cao=> ^H=90 độ=>^MHA=\(\frac{\widehat{H}}{2}=\frac{90^o}{2}=45^o\left(2\right)\)
Cộng (1) với (2)
=> ^NHA+^MHA=^MHN
=>45 độ + 45 độ =^MHN
=>^MHN=90 độ
Vậy ^MHN=90 độ