K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

Tham khảo

 

a,⇒C,A,Da,⇒C,A,D thẳngthẳng hàng⇒−−→CA+−−→CD=→0⇔−−→CA=−−→DChàng⇒CA→+CD→=0→⇔CA→=DC→

D(x;y)⇒−−→CA=−−→DC⇔{−1−x=2−2−y=0D(x;y)⇒CA→=DC→⇔{−1−x=2−2−y=0⇔{x=−1y=−2⇔{x=−1y=−2⇔{x=−3y=−2⇔{x=−3y=−2⇒D(−3;−2)⇒D(−3;−2)

b,E(xo;yo)⇒−−→AE=−−→BCb,E(xo;yo)⇒AE→=BC→⇔{xo−1=−3yo+2=−5⇔{xo−1=−3yo+2=−5⇔{xo=−2yo=−7⇔{xo=−2yo=−7⇒E(−2;−7)⇒E(−2;−7)

c,⇒G(xG;yG)⇒⎧⎪ ⎪⎨⎪ ⎪⎩xG=1+2−13=23yG=−2+3−23=−13c,⇒G(xG;yG)⇒{xG=1+2−13=23yG=−2+3−23=−13⇒G(23;−13)

25 tháng 11 2021

bạn ơi bạn có thể viết rõ câu trả lời hơn được không vì nó khó hiểu quá 

a: \(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{AC}=\left(-5;3\right);\overrightarrow{BC}=\left(-4;1\right)\)

Vì -1/-5<>2/3

nên A,B,C ko thẳng hàng

=>A,B,C là ba đỉnh của 1 tam giác

b: \(AB=\sqrt{\left(-1\right)^2+2^2}=\sqrt{5}\)

\(AC=\sqrt{\left(-5\right)^2+3^2}=\sqrt{34}\)

\(BC=\sqrt{\left(-4\right)^2+1^2}=\sqrt{17}\)

\(C=\sqrt{5}+\sqrt{34}+\sqrt{17}\left(cm\right)\)

\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\simeq0,844\)

=>sinBAC=0,54

\(S_{ABC}=\dfrac{1}{2}\cdot\sqrt{5}\cdot\sqrt{34}\cdot0.36\simeq2.35\left(cm^2\right)\)

c: ADBC là hình bình hành

=>vecto AD=vecto CB

=>x-3=2-(-2) và y+1=1-2

=>x-3=2+2 và y=-2

=>x=7 và y=-2

 

NV
20 tháng 12 2020

a.

\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{2-4}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{1+5}{2}=3\end{matrix}\right.\)

\(\Rightarrow I\left(-1;3\right)\)

b.

Do C thuộc trục hoành, gọi tọa độ C có dạng \(C\left(c;0\right)\)

Do D thuộc trục tung, gọi tọa độ D có dạng \(D\left(0;d\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c-2;-1\right)\\\overrightarrow{DB}=\left(-4;5-d\right)\Rightarrow2\overrightarrow{DB}=\left(-8;10-2d\right)\end{matrix}\right.\)

Để \(\overrightarrow{AC}=2\overrightarrow{DB}\)

\(\Leftrightarrow\left\{{}\begin{matrix}c-2=-8\\-1=10-2d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-6\\d=\dfrac{11}{2}\end{matrix}\right.\)

Vậy \(C\left(-6;0\right)\) và \(D\left(0;\dfrac{11}{2}\right)\)

NV
16 tháng 12 2020

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-1\right)\\\overrightarrow{BC}=\left(-3;4\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{u}=3\overrightarrow{AB}+2\overrightarrow{BC}=\left(-3;5\right)\)

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(1-x;5-y\right)\)

Để ABCD là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x=1\\5-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=6\end{matrix}\right.\)

\(\Rightarrow D\left(0;6\right)\)

NV
14 tháng 11 2021

a.

\(\overrightarrow{u}=2\left(2;1\right)-\left(3;4\right)=\left(1;-2\right)\)

\(\overrightarrow{v}=3\left(3;4\right)-2\left(7;2\right)=\left(-5;8\right)\)

\(\overrightarrow{w}=5\left(7;2\right)+\left(2;1\right)=\left(37;11\right)\)

b.

\(\overrightarrow{x}=2\left(2;1\right)+\left(3;4\right)-\left(7;2\right)=\left(0;4\right)\)

\(\overrightarrow{z}=2\left(2;1\right)-3\left(3;4\right)+\left(7;2\right)=\left(2;-8\right)\)

c.

\(\overrightarrow{w}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\Rightarrow\overrightarrow{w}=\overrightarrow{b}-\overrightarrow{c}-\overrightarrow{a}\)

\(\Rightarrow\overrightarrow{w}=\left(3;4\right)-\left(7;2\right)-\left(2;1\right)=\left(-6;1\right)\)