Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có do: AD=2AB mà AD=2AF nên AF=AB
Mặt khác AF=BE(tự cm) và AB=EF nên AF=BE=AB=EF
suy ra AFEB là hình thoi suy ra \(AE\perp BF\)
b, ABCD là hình bình hành nên \(\widehat{A}=\widehat{C_1}=60^o\)(1)
Mà AF=AB nên \(\Delta AFB\)cân tại A có góc A =60 độ nên tam giác AFB đều suy ra \(\widehat{AFB}=60^o\)
mặt khác AD//BC \(\Rightarrow\widehat{AFB}=\widehat{FBE}=60^o\)(2)
Từ (1) và (2) suy ra FDCB là hình thang cân.
c, Ta có AB=BM=DC mà BM//DC nên BDCM là hình bình hành
lại có:
BF=AF mà AF=FD nên FD=BF suy ra \(\Delta FDB\)cân tại F \(\Rightarrow\widehat{D_1}=\widehat{B_1}=\frac{180^o-\widehat{BFD}}{2}=30^o\)
(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)
Mà \(\widehat{D_1}+\widehat{D_2}=\widehat{ADC}=120^o\Rightarrow\widehat{D_2}=90^o\)
(đoạn này làm hơi tắt bạn tự tìm hiểu và triển khai nha)
Hình bình hành BDCM có góc D2=90 độ nên BDCM là hình chữ nhật
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó; ABEFlà hình thoi
=>AE vuông góc với BF
b: Xét ΔABF có AB=AF và góc FAB=60 độ
nên ΔABF đều
=>góc BFD=120 độ=góc CDF
Xét tứ giác BCDF có
BC//DF
góc BFD=góc D=120 độ
Do đó: BCDF là hình thang cân
c: Xét ΔBAD có
BF là trung tuyến
BF=AD/2
Do đó ΔBAD vuông tại B
=>góc MBD=90 độ
Xét tứ giác BMCD co
BM//CD
BM=CD
góc MBD=90 độ
Do đó; BMCD là hình chữ nhật
=>BC cắt MD tại trung điểm của mỗi đường
=>M,E,D thẳng hàng
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó; ABEFlà hình thoi
=>AE vuông góc với BF
b: Xét ΔABF có AB=AF và góc FAB=60 độ
nên ΔABF đều
=>góc BFD=120 độ=góc CDF
Xét tứ giác BCDF có
BC//DF
góc BFD=góc D=120 độ
Do đó: BCDF là hình thang cân
c: Xét ΔBAD có
BF là trung tuyến
BF=AD/2
Do đó ΔBAD vuông tại B
=>góc MBD=90 độ
Xét tứ giác BMCD co
BM//CD
BM=CD
góc MBD=90 độ
Do đó; BMCD là hình chữ nhật
=>BC cắt MD tại trung điểm của mỗi đường
=>M,E,D thẳng hàng
a: Xét tứ giác BEFA có
BE//AF
BE=FA
BE=BA
=>BEFA là hình thoi
b: góc B=180-60=120 độ
=>góc IBE=60 độ
mà IB=BE
nên ΔIBE đều
=>góc EIB=60 độ=góc A
=>AIEF là hình thang cân
c:
Xét ΔABD có
BF là trung tuyến
BF=AD/2
Do đo: ΔABD vuông tại B
Xét tứ giác BICD có
BI//CD
BI=CD
góc IBD=90 độ
Do đó: BICD là hình chữ nhật
d: Xét ΔAED có
EF là trung tuyến
EF=AD/2
=>ΔAED vuông tại E
=>góc AED=90 độ
a) Ta có: \(AF=\dfrac{AD}{2}\)(F là trung điểm của AD)
\(BE=\dfrac{BC}{2}\)(E là trung điểm của BC)
mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)
nên AF=BE
Xét tứ giác AFEB có
AF//BE(AD//BC, F∈AD, E∈BC)
AF=BE(cmt)
Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: \(AD=2\cdot AB\)(gt)
mà \(AD=2\cdot AF\)(F là trung điểm của AD)
nên AB=AF
Hình bình hành AFEB có AB=AF(cmt)
nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)
⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)
hay AE⊥BF(đpcm)
b) Ta có: AFEB là hình thoi(cmt)
nên AF=FE=EB=AB và \(\widehat{A}=\widehat{FEB}\)(Số đo của các cạnh và các góc trong hình thoi AFEB)
hay \(\widehat{FEB}=60^0\)
Xét ΔFEB có FE=EB(cmt)
nen ΔFEB cân tại E(Định nghĩa tam giác cân)
Xét ΔFEB cân tại E có \(\widehat{FEB}=60^0\)(cmt)
nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)
⇒\(\widehat{BFE}=60^0\)(Số đo của một góc trong ΔFEB đều)
Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)
nên \(\widehat{A}=\widehat{DFE}\)(hai góc đồng vị)
hay \(\widehat{DFE}=60^0\)
Ta có: tia FE nằm giữa hai tia FB,FD
nên \(\widehat{DFB}=\widehat{DFE}+\widehat{BFE}\)
\(\Leftrightarrow\widehat{DFB}=60^0+60^0=120^0\)(1)
Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)
nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía bù nhau)
hay \(\widehat{D}=180^0-60^0=120^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DFB}=\widehat{D}\)
Xét tứ giác BFDC có
FD//BC(AD//BC, F∈AD)
nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)
Hình thang BFDC có \(\widehat{DFB}=\widehat{D}\)(cmt)
nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
haizz