K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2015

a) Các số có 2 chữ số mà là B(7) là: 14;21;28;35;42;49;56;63;70;77;84;91 ( đây là dãy cách đều 7); (có 12 số )

=> Tổng các bội có 2 chữ số của 7 là: 14+21+28+35+42+49+56+63+70+77+84+91= (14+91).12:2=630

Vậy...

b) tương tự nhé bạn tự gải

nếu thấy đùng cho xin cái tik đúng nha 

8 tháng 7 2017

a)Tổng các chữ số của  ababab = a+b+a+b+a+b=3a+3b=3(a+b)\(⋮3\)
=) ababab\(⋮3\)=) ababab\(\)là bội của 3 ( Đpcm )
b) Ta có \(n+6⋮n-4\)( Theo đề bài )
mà \(n-4⋮n-4\)
=) \(\left(n+6\right)-\left(n-4\right)⋮n-4\)
=) \(n+6-n+4⋮n-4\)
=) \(10⋮n-4\)=) \(n-4\inƯ\left(10\right)=\left\{1,2,5,10\right\}\)( Với ước dương )
=) \(n=\left\{5,6,9,14\right\}\)

24 tháng 5 2020

????????????????

?????????????????

??????????????

/?????????????

/?????????????????????????????????????????????

???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

22 tháng 7 2016

Bài 2

a)Ta có:\(2001^{2002}+2002^{2003}\)

          =\(\left(.....1\right)+2002^{2000}.2002^3\)

          =\(\left(.....1\right)+\left(....6\right).\left(.....8\right)\)

          =\(\left(.....9\right)\)không chia hết cho 2

b)Ta có:\(861^7+972^2\)

          =\(\left(.....1\right)+\left(......4\right)\)

          =\(\left(......5\right)\)chia hết cho 5

           

22 tháng 10 2023
  1. Để chứng minh rằng số m cũng là một bội số của 121, ta cần chứng minh rằng (16a+17b)(17a+16b) chia hết cho 11 và 121.

Đầu tiên, chúng ta xét xem (16a+17b)(17a+16b) chia hết cho 11 hay không. Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.

Vì 11 là một số nguyên tố, nên theo tính chất của phép nhân, để m là một bội số của 11, thì mỗi thành phần của m cũng phải là một bội số của 11.

Ta thấy rằng 272a^2 và 272b^2 đều chia hết cho 11, vì 272 chia hết cho 11. Vì vậy, ta chỉ cần chứng minh rằng 528ab chia hết cho 11 để kết luận m là một bội số của 11.

Để chứng minh điều này, ta sử dụng tính chất căn bậc hai modulo 11. Ta biết rằng căn bậc hai của 11 là 5 hoặc -5 (vì 5^2 = 25 ≡ 3 (mod 11)). Vì vậy, ta có:

(16a+17b)(17a+16b) ≡ (5a+6b)(6a+5b) (mod 11).

Mở ngoặc, ta được:

(5a+6b)(6a+5b) ≡ 30ab + 30ab ≡ 60ab ≡ 6ab (mod 11).

Vì 6 không chia hết cho 11, nên 6ab cũng không chia hết cho 11. Do đó, ta kết luận rằng 528ab không chia hết cho 11 và m là một bội số của 11.

Tiếp theo, chúng ta cần chứng minh rằng m là một bội số của 121. Để làm điều này, ta cần chứng minh rằng m chia hết cho 121.

Một cách để chứng minh rằng m chia hết cho 121 là tìm một số tự nhiên k sao cho m = 121k. Để làm điều này, chúng ta cần tìm một số tự nhiên k sao cho (16a+17b)(17a+16b) = 121k.

Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.

Chúng ta đã chứng minh rằng m là một bội số của 11, vậy m = 11m' với m' là một số tự nhiên.

Thay thế m vào công thức m = 272a^2 + 528ab + 272b^2, ta có:

11m' = 272a^2 + 528ab + 272b^2.

Chia cả hai vế của phương trình cho 11, ta có:

m' = 24a^2 + 48ab + 24b^2.

Như vậy, m' là một số tự nhiên. Điều này cho thấy rằng m chia hết cho 121 và m là một bội số của 121.

  1. Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, chúng ta cần tìm tổng của tất cả các số tự nhiên từ 10 đến 99 không chia hết cho 3 và 5.

Để tính tổng này, chúng ta có thể sử dụng công thức tổng của một dãy số từ một số đến một số khác. Công thức này là:

Tổng = (Số lượng số trong dãy) * (Tổng của số đầu tiên và số cuối cùng) / 2,

trong đó, Số lượng số trong dãy = (Số cuối cùng - Số đầu tiên) + 1.

Áp dụng công thức này vào bài toán, ta có:

Số đầu tiên = 10, Số cuối cùng = 99, Số lượng số trong dãy = (99 - 10) + 1 = 90.

Tổng = 90 * (10 + 99) / 2 = 90 * 109 / 2 = 90 * 54,5 = 4.905.

Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 4.905.

22 tháng 10 2023

Bài toán 1: Để chứng minh số m cũng là một bội số của 121, ta sẽ sử dụng một số tính chất của phép chia.

Ta có: m = (16a + 17b)(17a + 16b) = (17a + 16b)^2 - (ab)^2

Vì m là một bội số của 11, nên ta có thể viết m dưới dạng m = 11k, với k là một số tự nhiên.

Từ đó, ta có (17a + 16b)^2 - (ab)^2 = 11k.

Áp dụng công thức (a + b)^2 - (ab)^2 = (a - b)^2, ta có (17a + 16b + ab)(17a + 16b - ab) = 11k.

Ta có thể chia hai trường hợp để xét:

Trường hợp 1: (17a + 16b + ab) chia hết cho 11. Trường hợp 2: (17a + 16b - ab) chia hết cho 11.

Trong cả hai trường hợp trên, ta đều có một số tự nhiên tương ứng với mỗi trường hợp.

Do đó, nếu m là một bội số của 11, thì m cũng là một bội số của 121.

Bài toán 2: Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, ta cần xác định tập hợp các số thỏa mãn điều kiện trên và tính tổng của chúng.

Các số tự nhiên hai chữ số không chia hết cho 3 và 5 có dạng AB, trong đó A và B lần lượt là các chữ số từ 1 đến 9.

Ta thấy rằng có 3 chữ số (3, 6, 9) chia hết cho 3 và 2 chữ số (5, 0) chia hết cho 5. Vì vậy, số các chữ số không chia hết cho 3 và 5 là 9 - 3 - 2 = 4.

Do đó, mỗi chữ số A có 4 cách chọn và mỗi chữ số B cũng có 4 cách chọn.

Tổng tất cả các số có hai chữ số không chia hết cho 3 và 5 là 4 x (1 + 2 + 3 + ... + 9) x 4 = 4 x 45 x 4 = 720.

Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 720.

23 tháng 7 2016

a) Số bé nhất có 3 chữ số chia hết cho 2 là: 100

Số lớn nhất của 3 chữ số chia hết cho 2 là: 998

Mỗi số hạng liên tiếp chia hết cho 2 cách nhau 2 đơn vị

=> Số số hạng của tổng trên là: (998-100):2+1 =450 (số)

Tổng trên là: (998+100) x 450 :2 = 247050

b) Số lớn nhất có 2 chữ số chia hết cho 5 là: 95

Số bé nhất có 2 chữ số chia hết cho 5 là: 10

Mỗi số hạng liên tiếp chia hết cho 5 cách nhau 5 đơn vị

=> Số số hạng của tổng trên là: (95-10):5+1 = 18 (số)

Tổng trên là: (95+10) x 18:2 = 945

nha?

a)Số lớn nhất là 998

Số bé nhất là 100

Số các số hạng là: (998 - 100) : 2 + 1 = 450 số

Tổng là: (998 + 100) x 450 : 2 = 247050

b)Số lớn nhất là 95

Số bé nhất là 10

Số các số hạng là: (95 - 10) : 5 + 1 = 18 số

Tổng là: (95 + 10) x 18 : 2 = 945