Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)= 2021.2021-2020.(2021+1)
= 2021.(2020+1)-2020.(2021+1)
= (2021.2020)+2021-(2020.2021)-2020
= 1
b) B= (1+2-3-4)+(5+6-7-8)+(9+10-11-12)...........+(2017+2018-2019-2020)+2021
B= -4+(-4)+....................(-4)+2021
B= -4x505+2021
B= -2020 + 2021
B = 1
a: \(=\dfrac{8}{9}\cdot\dfrac{9}{4}\cdot\dfrac{12}{19}\cdot\dfrac{19}{24}=\dfrac{1}{2}\cdot2=1\)
b: \(=\dfrac{5}{16}\cdot\dfrac{17}{15}\cdot\dfrac{8}{17}=\dfrac{5}{16}\cdot\dfrac{8}{15}=\dfrac{40}{240}=\dfrac{1}{6}\)
c: \(=\dfrac{4}{13}\left(\dfrac{2}{7}+\dfrac{5}{7}\right)-\dfrac{3}{26}=\dfrac{4}{13}-\dfrac{3}{26}=\dfrac{5}{26}\)
c: \(=\dfrac{3}{4}\left(\dfrac{6}{11}+\dfrac{5}{11}\right)-\dfrac{1}{5}=\dfrac{3}{4}-\dfrac{1}{5}=\dfrac{11}{20}\)
a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{1}+0+0+...+0-\dfrac{1}{100}\)
=\(1-\dfrac{1}{100}\)
= \(\dfrac{99}{100}\)
a) 11.2+12.3+13.4+....+199.10011.2+12.3+13.4+....+199.100
= 11−12+12−13+13−14+....+199−110011−12+12−13+13−14+....+199−1100
=11+0+0+...+0−110011+0+0+...+0−1100
=1−11001−1100
= 99100
`A=(8 2/7-4 2/7)-3 4/9`
`=8+2/7-4-2/7-3-4/9`
`=4-3-4/9`
`=1-4/9=5/9`
`B=(10 2/9-6 2/9)+2 3/5`
`=10+2/9-6-2/9+2+3/5`
`=4+2+3/5`
`=6+3/5=33/5`
Bài 2:
`a)5 1/2*3 1/4`
`=11/2*13/4`
`=143/8`
`b)6 1/3:4 2/9`
`=19/3:38/9`
`=19/3*9/38=3/2`
`c)4 3/7*2`
`=31/7*2`
`=62/7`
Bài 1:
\(A=\left(8\dfrac{2}{7}-4\dfrac{2}{7}\right)-3\dfrac{4}{9}\)
\(A=\left(\dfrac{58}{7}-\dfrac{30}{7}\right)-\dfrac{31}{9}\)
\(A=4-\dfrac{31}{9}\)
\(A=\dfrac{5}{9}\)
\(B=\left(10\dfrac{2}{9}-6\dfrac{2}{9}\right)+2\dfrac{3}{5}\)
\(B=\left(\dfrac{92}{9}-\dfrac{56}{9}\right)+\dfrac{13}{5}\)
\(B=4+\dfrac{13}{5}\)
\(B=\dfrac{33}{5}\)
1:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}\)
=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+..+\dfrac{1}{7\cdot8}\)
=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}=\dfrac{7}{8}< 1\)
\(\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\) (sửa \(-9^9\rightarrow.9^9\))
\(=\dfrac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\dfrac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\dfrac{2^{29}.3^{18}\left(15-9\right)}{2^{28}.3^{18}\left(15-14\right)}\)
\(=2.6=12\)
\(=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{29}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot3-7\right)}=\dfrac{10-9}{15-7}=\dfrac{1}{8}\)