Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Bạn tự vẽ đồ thị
b. PT hoành độ giao điểm:
$2x-3=\frac{1}{2}x$
$\Rightarrow x=2$
Khi đó: $y=\frac{1}{2}x=\frac{1}{2}.2=1$
Vậy tọa độ giao điểm của 2 đường thẳng là $(2;1)$
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2=-2x+3\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-3=0\\y=x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+3\right)\left(x-1\right)=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;9\right);\left(1;1\right)\right\}\)
Bài 1:
a: \(x^2+6x+8=0\)
=>(x+2)(x+4)=0
=>x=-2 hoặc x=-4
b: \(9x^2-6x+1=0\)
=>(3x-1)2=0
=>3x-1=0
hay x=1/3
Câu 1:
a. x2 + 6x + 8 = 0
\(\Delta'=3^2-8=1>0\)
Do \(\Delta'>0\) nên phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{-3+\sqrt{1}}{1}=-2\)
\(x_2=\dfrac{-3-\sqrt{1}}{1}=-4\)
b. 9x2 - 6x + 1 = 0
\(\Delta'=\left(-3\right)^2-9.1=0=0\)
Do \(\Delta'=0\) nên phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{3}{9}=\dfrac{1}{3}\)
a, Cách vẽ đồ thị hàm số y=x^2 và y=2x-1
b, bằng cách giải PT xác định tọa độ giao điểm 2 đồ thị trên
a) Đồ thị hàm số y = x2 là parabol đi qua 3 điểm O(0; 0); A(1;1); B(-1; 1) ; nhận trục Oy là trục đối xứng
+) Đồ thị hàm số y = 2x -1 là đường thẳng đi qua 2 điểm C(0; -1); D(1/2; 0)
b) Hoành độ giao điểm là nghiệm của phương trình: x2 = 2x - 1 => x2 - 2x + 1 = 0 => (x -1)2 = 0 => x = 1
=> y = 1
Vậy toạ độ giao điểm của hai đồ thị hàm số là điểm (1;1)
Câu 2:
c) Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{1}{2}x^2=2x+6\)
\(\Leftrightarrow\dfrac{1}{2}x^2-2x-6=0\)
\(\Leftrightarrow x^2-4x-12=0\)
\(\Leftrightarrow x^2-4x+4=16\)
\(\Leftrightarrow\left(x-2\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
Thay x=6 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot6^2=18\)
Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)
Vậy: Tọa độ giao điểm của (P) và (d) là (6;18) và (-2;2)
Câu 3:
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2\right)}{1}=2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-1}{1}=-1\end{matrix}\right.\)
Ta có: \(P=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)^3-3\cdot x_1x_2\left(x_1+x_2\right)\)
\(=2^3-3\cdot\left(-1\right)\cdot2\)
\(=8+3\cdot2\)
\(=8+6=14\)
Vậy: P=14
2. PT hoành độ giao điểm: \(3x=x+2\Leftrightarrow2x=2\Leftrightarrow x=1\Leftrightarrow y=3\Leftrightarrow A\left(1;3\right)\)
Vậy \(A\left(1;3\right)\) là giao 2 đths
Câu 1:
2)
a) Ta có: \(x^2-12x+27=0\)
\(\Leftrightarrow x^2-9x-3x+27=0\)
\(\Leftrightarrow x\left(x-9\right)-3\left(x-9\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=3\end{matrix}\right.\)
Vậy: S={9;3}
bài 1
a, 2x2-5x-3=0
đenta=52-4.(-3).2=25+24=49>0
=>x1=3 , x2=-1/2
Bài 1a :
a, \(2x^2-5x-3=0\)
Ta có : \(\Delta=25-4.2.\left(-3\right)=25+24=49>0\)
Vậy pt có 2 nghiệm phân biệt :
\(x_1=\frac{5-7}{4}=-\frac{1}{2};x_2=\frac{5+7}{4}=3\)