Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác SAOB có
\(\widehat{SAO}+\widehat{SBO}=180^0\)
Do đó: SAOB là tứ giác nội tiếp
b: Xét (O) có
SA là tiếp tuyến
SB là tiếp tuyến
Do đó: SA=SB
hay S nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OS là đường trung trực của AB
hay OS⊥AB
a: Xét tứ giác SAOB có \(\widehat{SAO}+\widehat{SBO}=180^0\)
nên SAOB là tứ giác nội tiếp(1)
Xét tứ giác OISB có \(\widehat{OIS}+\widehat{OBS}=180^0\)
nên OISB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra S,A,I,O,B cùng thuộc một đường tròn
b: Xét ΔSAM và ΔSNA có
\(\widehat{SAM}=\widehat{SNA}\)
\(\widehat{NSA}\) chung
Do đó: ΔSAM\(\sim\)ΔSNA
SUy ra: SA/SN=SM/SA
hay \(SA^2=SM\cdot SN\)
a: Xét tứ giác OASB có
\(\widehat{OAS}+\widehat{OBS}=180^0\)
Do đó: OASB là tứ giác nội tiếp
a, Ta có SA = SB (tc tiếp tuyến cắt nhau )
OA = OB = R
Vậy OS là đường trung trực đoạn AB
=> SO vuông AB tại H
b, Vì I là trung điểm
=> OI vuông NS
Xét tứ giác IHSE ta có ^EHS = ^EIS = 900
mà 2 góc này kề, cùng nhìn cạnh ES
Vậy tứ giác IHSE nt 1 đường tròn
=> ^ESH = ^HIO ( góc ngoài đỉnh I )
Xét tam giác OIH và tam giác OSE có
^HIO = ^OSE (cmt)
^O_ chung
Vậy tam giác OIH ~ tam giác OSE (g.g)
\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)
Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có
\(OA^2=OH.OS\)(hệ thức lượng)
\(\Rightarrow OA^2=R^2=OI.OE\)
a: góc SAO+góc SBO=180 độ
=>SAOB nội tiếp
c: Xét ΔSAD và ΔSCA có
góc SAD=góc SCA
góc ASD chung
=>ΔSAD đồng dạng vớiΔSCA
1: góc OAS+góc OBS=90+90=180 độ
=>OASB nội tiép
2: Xét ΔSAC và ΔSDA có
góc SAC=góc SDA
góc ASC chung
=>ΔSAC đồng dạng với ΔSDA
=>SA/SD=SC/SA
=>SA^2=SD*SC=SA*SB
3: Xét (O) có
SA,SB là tiêp tuyến
=>SA=SB
mà OA=OB
nên OS là trung trực của AB
=>OS vuông góc AB tại I
=>SI*SO=SA^2=SC*SD
=>SI/SD=SC/SO
=>ΔSIC đồng dạng với ΔSDO
Xét tứ giác AOBS có
\(\widehat{SAO}+\widehat{SBO}=180^0\)
Do đó: AOBS là tứ giác nội tiếp