K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 2 2021

a.

Gọi \(M\left(x;y\right)\in d\)

\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)

\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)

b.

Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)

\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)

\(\Leftrightarrow7a^2+48ab-7b^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)

\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)

10 tháng 3 2022

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)

21 tháng 6 2017

Giả sử đường thẳng ∆ song song với d : 3x- 4y+2= 0

Khi đó ; ∆ có phương trình là ∆ : 3x-4y +C= 0.

Lấy điểm  M( -2 ; -1) thuộc d.

Do đó ; 2 đường thẳng thỏa mãn là:3x – 4y + 7 = 0 và 3x – 4y – 3 = 0

Chọn B

NV
14 tháng 4 2022

a.

\(\overrightarrow{AB}=\left(1;2\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtpt

Phương trình AB:

\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)

b.

d vuông góc \(\Delta\Rightarrow d\) nhận (4;-3) là 1 vtpt

Phương trình d có dạng: \(4x-3y+c=0\)

\(d\left(B;d\right)=\dfrac{\left|4.2-3.\left(-1\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{2}{5}\)

\(\Leftrightarrow\left|c+11\right|=2\Rightarrow\left[{}\begin{matrix}c=-9\\c=-13\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}4x-3y-13=0\\4x-3y-9=0\end{matrix}\right.\)

NV
7 tháng 4 2022

a.

\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt

Phương trình AB:

\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)b.

Do d vuông góc delta nên d nhận (4;-3) là 1 vtpt

Phương trình d có dạng: \(4x-3y+c=0\)

\(d\left(B;d\right)=\dfrac{\left|4.5-3.1+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{1}{5}\)

\(\Rightarrow\left|c+17\right|=1\Rightarrow\left[{}\begin{matrix}c=-16\\c=-18\end{matrix}\right.\)

Có 2 đường thẳng d thỏa mãn: \(\left[{}\begin{matrix}4x-3y-16=0\\4x-3y-18=0\end{matrix}\right.\)

2 tháng 5 2023

loading...  d lâu r ko làm ko nhớ -)(

a: y=ax+b

a=tan alpha=1

=>y=x+b

Thay x=-1 và y=1 vào (d), ta được:

b-1=1

=>b=2

=>y=x+2

d: (Δ)//(d) nên Δ: 3x+4y+c=0

(C): x^2+y^2-2x+2y-7=0

=>x^2-2x+1+y^2+2y+1=9

=>(x-1)^2+(y+1)^2=9

=>R=3; I(1;-1)

Theo đề, ta có: d(I;Δ)=3

=>\(\dfrac{\left|1\cdot3+\left(-1\right)\cdot4+c\right|}{\sqrt{3^2+4^2}}=3\)

=>|c-1|=3*5=15

=>c=16 hoặc c=-14