Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)
Tương tự: \(\left(\sqrt{a+b}\right)^2=a+b\)
Nhận thấy: \(\left(\sqrt{a}+\sqrt{b}\right)^2>\left(\sqrt{a+b}\right)^2\)
Suy ra: \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)
Bài 1:
a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)
TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)
TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)
b) \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)
c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)
TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)
Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)
TH2: \(x< -\frac{3}{8}\)
Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)
Bài 2: Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)
Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)
Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)
Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)
\(\Rightarrow x\in\left\{1;9;81\right\}\)
a) \(4x^2-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=0\\2x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
b) \(\left(x-1\right)^2=\frac{9}{16}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=\frac{3}{4}\\x-1=-\frac{3}{4}\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7}{4}\\x=\frac{1}{4}\end{array}\right.\)
c) \(\sqrt{x}=4\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow x=16\)
d) \(\sqrt{x+1}=2\left(ĐKx\ge-1\right)\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
2.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)
=> x,y,z=
1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)
=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)
6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)
Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=> M > 1
Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)
Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
=> M < 2 (2)
Kết hợp (1) và (2) => 1 < M < 2
=> \(M\notinℤ\)(ĐPCM)
Bài 1:
a, \(\sqrt{x}+98=498\)
\(\Leftrightarrow\sqrt{x}=400\Leftrightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)
b, \(\frac{9}{7}+\sqrt{\frac{1600}{100}}-x+5=\frac{1920}{17}\)
\(\Leftrightarrow-x=\frac{1920}{17}-5-\frac{9}{7}-4\)
\(\Leftrightarrow-x=\frac{12216}{119}\Leftrightarrow x=-\frac{12216}{119}\)
c, \(3728+\left(-x\right)=0\)
\(\Leftrightarrow3728-x=0\Leftrightarrow x=3728\)
d, \(\left(-45\right)+6-\sqrt{x}=43\)
\(\Leftrightarrow-\sqrt{x}=43-6+45\)
\(\Leftrightarrow-\sqrt{x}=82\Leftrightarrow\sqrt{x}=-82\)
=> phương trình vô nghiệm vì \(\sqrt{x}\ge0\)
Bài 2:
Không có liên hệ cụ thể giữa a và b thì khó tìm lắm bạn ơi, vì nó có rất nhiều kết quả, nếu cần thì nhắn cho mình, mình liệt kê hết cho
\(\begin{array}{l}a)\sqrt x - 16 = 0\\\sqrt x = 16\\x = {16^2}\\x = 256\end{array}\)
Vậy x = 256
\(\begin{array}{l}b)2\sqrt x = 1,5\\\sqrt x = 1,5:2\\\sqrt x = 0.75\\x = {(0,75)^2}\\x = 0,5625\end{array}\)
Vậy x = 0,5625
\(\begin{array}{l}c)\sqrt {x + 4} - 0,6 = 2,4\\\sqrt {x + 4} = 2,4 + 0,6\\\sqrt {x + 4} = 3\\x + 4 = 9\\x = 5\end{array}\)
Vậy x = 5
Bài 16:
a: \(x=2\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>x=0 hoặc x=4
b: \(\Leftrightarrow\left(x-1\right)^2=\dfrac{9}{16}\)
=>x-1=3/4 hoặc x-1=-3/4
=>x=7/4 hoặc x=1/4