K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2022

a)xét tam giác AHC vuông tại H và tam giác BEC vuông tại E có:

góc C:góc chung

góc E= góc H=90 độ (đường cao AH, BE)

=> tam giác AHC đồng dạng với tam giác BEC(góc-góc)

=> CH/CE=CA/CB(các cặp cạnh tương ứng tỉ lệ)

=> CH.CB=CE.CA(điều phải cm)

b) Có CH.CB=CE.CA(cm a)

=> CH/CE=CA/CB

xét tam giác CHE và tam giác ABC có:

góc C:góc chung

CH/CE=CA/CB(cmt)

=> tam giác CHE đồng dạng với tam giác ABC(c-g-c)

p/s: bạn thay đồng dạng,góc,độ=kí hiệu nhé.hình mình vẽ hơi ẩu b thông cảm huhu

a: Xet ΔCHA vuông tại H và ΔCKB vuông tại K có

góc C chung

=>ΔCHA đồng dạng với ΔCKB

b: Xét ΔCAB có

AH,BK là đừog cao

AH cắt BK tại D

=>D là trực tâm

=>CD vuông góc AB tại E

góc CHA=góc CEA=90 độ

=>CHEA nội tiếp

=>góc BHE=góc BAC

mà góc HBE chung

nên ΔBEH đồng dạng với ΔBAC

c: góc KHD=góc ACE

góc EHA=góc KBA

mà góc ACE=góc KBA

nên góc KHD=góc EHD

=>HA là phân giác của góc EHK

a: Xet ΔAFB vuông tại F và ΔAEC vuông tại E có

góc A chung

=>ΔAFB đồng dạng với ΔAEC

b: ΔAFB đồng dạng với ΔAEC

=>AF/AE=AB/AC
=>AF*AC=AB*AE

=>AF/AB=AE/AC

=>ΔAFE đồng dạng với ΔABC

c: Xét ΔBDH vuông tại D và ΔBFC vuông tại Fco

góc DBH chung

=>ΔBDH đồng dạng với ΔBFC

22 tháng 4 2018

A B C H 12cm 16cm I D

a)Tính BC:

\(\Delta ABC\)vuông tại A nên:

BC2=AB2+AC2

BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)

b) Xét \(\Delta vuôngABC\)\(\Delta VuôngHBA\)có:

\(\widehat{B}\):chung 

Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)

Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)

=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH       =>AB = BC.BH

c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:

\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)

Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:

\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác)   (2)

Vì BI là đường phân giác của \(\Delta HBA\) nên:

\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác)   (3)

Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)

2 tháng 5 2022

a. Xét tam giác ABC và tam giác HBA có:

góc A= góc H= 90o

góc B chung

=> tam giác ABC ~ tam giác HBA (g.g)

=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)

=> AB2= BH.BC

 

20 tháng 3 2018

a) Xét \(\Delta\)ABE  và \(\Delta\)ACF có

\(\widehat{A}\)là góc chung

\(\widehat{AEB}\)=\(\widehat{AFC}\)(=\(90^O\))

=> \(\Delta\)ABE đồng dạng \(\Delta\)ACF (g.g)

=> \(\frac{AE}{AF}\)=\(\frac{AB}{AC}\)

=> \(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)

Xét \(\Delta\)AEF và  \(\Delta\)ABC có

\(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)

Và \(\widehat{A}\)góc chung

Suy ra \(\Delta\)AEF đồng dạng \(\Delta\)ABC( c.g.c)  (1)

b) Tương tự, chứng minh \(\Delta\)BEC đồng dạng\(\Delta\)ADC ( G.G)

=> \(\frac{EC}{DC}\)=\(\frac{BC}{AC}\)

=> \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)

Xét \(\Delta\)DEC và \(\Delta\)ABC  có

 \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)

\(\widehat{C}\)góc chung

=> \(\Delta\)DEC đồng dạng \(\Delta\)ABC( c.g.c)  (2)

Từ (1) (2) => \(\Delta\)DEC đồng dạng \(\Delta\)AEF

=> \(\widehat{DEC}\)=\(\widehat{AEF}\)(3)

Mà \(\widehat{AEB}\)\(\widehat{CEB}\)\(90^O\)

=> \(\widehat{AEF}\)+\(\widehat{FEB}\)=\(\widehat{DEC}\)+\(\widehat{BED}\)(4)

Từ (3)(4) => \(\widehat{FEB}\)=\(\widehat{BED}\)

=> EH là phân giác góc FED

21 tháng 7 2021

??

26 tháng 4 2018

a)  Xét  \(\Delta AEB\) và   \(\Delta AFC\) có:

     \(\widehat{AEB}=\widehat{AFC}=90^0\)

     \(\widehat{A}\)  chung

suy ra:   \(\Delta AEB~\Delta AFC\) (g.g)

\(\Rightarrow\)\(\frac{AE}{AF}=\frac{AB}{AC}\) \(\Rightarrow\)\(AF.AB=AE.AC\)

b)   \(\frac{AE}{AF}=\frac{AB}{AC}\)\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\) có:

           \(\frac{AE}{AB}=\frac{AF}{AC}\)  (cmt)

           \(\widehat{A}\) chung

suy ra:   \(\Delta AEF~\Delta ABC\) (c.g.c)

\(\Rightarrow\)   \(\widehat{AEF}=\widehat{ABC}\)

c)   \(\Delta AEF~\Delta ABC\)

\(\Rightarrow\)\(\frac{S_{ABC}}{S_{AEF}}=\left(\frac{AB}{AE}\right)^2=\left(\frac{3}{6}\right)^2=\frac{1}{4}\)

\(\Rightarrow\)\(S_{ABC}=4S_{AEF}\)

29 tháng 3 2022

Gửi các bạn lời giải 1 bài tương tự

https://youtu.be/mjiZSkISHgA

30 tháng 4 2019

a, Xét tgABE và tgACF có:

góc AEB = góc CFA = 90o 

góc BAC chung

Từ 2 điều trên => tgABE đồng dạng tgACF (g.g)

=> AB/AC = AE/AF (các cặp cạnh tương ứng)

=> AB.AF = AC.AE

30 tháng 4 2019

xét tam giác ABE và tam giác ACF có : 

góc AEB = góc AFC = 90 do ...

góc CAB chung

=> tam giác ABE ~ tam giác ACF (g.g)

=> AB/AC = AE/AF

=> AB.AF = AC.AE