K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

a/ Ta có: \(AB=AC\Leftrightarrow AD+BD=AE+CE\). Mà BD = CE (gt)

\(\Rightarrow AD=AE\)

Vậy: △ADE cân tại A (đpcm)

==========

b/ Ta có: △ADE cân tại A \(\Rightarrow\hat{ADE}=\dfrac{180\text{ }\text{˚}-\hat{A}}{2}\)

△ABC cân tại A \(\Rightarrow\hat{ABC}=\dfrac{180\text{˚}-\hat{A}}{2}\)

- Mà 2 góc này ở vị trí đồng vị

Vậy: DE // BC (đpcm)

==========

c/ DE // BC (cmt) ⇒ Tứ giác BDEC là hình thang

- BDEC có \(\hat{B}=\hat{C}\)

Vậy:Tứ giác BDEC là hình thang cân (đpcm)

Chúc bạn học tốt!

3 tháng 9 2021

thx bạn nhiều

 

a) Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AB=AC;AD=AE\right)\)

D\(\in\)AB(gt)

E\(\in\)AC(gt)

Do đó: DE//BC(Định lí Ta lét đảo)

Xét tứ giác BDEC có DE//BC(cmt)

nên BDEC là hình thang(Định nghĩa hình thang)

Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

 

27 tháng 8 2021

a, Vì AD = AE nên \(\Rightarrow\Delta ADE\)là tam giác cân tại A 

\(\Rightarrow gócADE\)\(=\frac{180^o-A}{2}\)

Vì \(\Delta ABC\)cân tại A nên

Góc CBA = \(\frac{180^o-A}{2}\)

\(\Rightarrow ADE=CBA\)( mà 2 góc này nằm trong vị trí so le trong )

\(\Rightarrow\)\(DE//BC\)

Mà \(ABC=ACB\)(Vì tam giác ABC cân tại A ) 

\(\Rightarrow\)Tứ giác BDEC là hình thang cân

b, 

Ta có :

^A \(=70^o\)\(\Rightarrow\)^B=^C =\(55^O\)

\(\Rightarrow BDE=CED=\frac{\left(360-2\cdot55\right)}{2}=125^O\)

13 tháng 11 2021

a: Xét ΔABC có

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Do đó: DE//BC

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BDEC là hình thang cân

thật ra em cần ý b hơn ._.

a) Xét ΔABC có

D là trung điểm của AB(gt)

E là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Xét tứ giác BDEC có DE//BC(cmt)

nên BDEC là hình thang có hai đáy là DE và BC(Định nghĩa hình thang)

Hình thang BDEC(BC//DE) có \(\widehat{B}=\widehat{C}\left(=60^0\right)\)

nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Ta có: \(DE=\dfrac{BC}{2}\)(cmt)

\(BD=\dfrac{1}{2}AB\)(D là trung điểm của AB)

\(EC=\dfrac{1}{2}AC\)(E là trung điểm của AC)

mà BC=AB=AC(ΔABC đều)

nên DE=BD=EC

Vậy: BDEC là hình thang cân có đáy nhỏ bằng cạnh bên

b) Ta có: \(DE=BD=EC=\dfrac{AB}{2}\)(cmt)

nên DE=BC=EC=3(cm)

Chu vi hình thang BDEC là:

C=DE+DB+EC+BC=3+3+3+6=15(cm)