K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

Ta có: B = 22010  -   22009  -  22008  -......- 2 -1

=> B = 22010 - (1 + 2 + 22 + ..... + 22009)

Đặt A = 1 + 2 + 22 + .... + 22009

=> 2A = 2 + 22 + .... + 22010

=> 2A - A = 22010 - 1

=> A = 22010 - 1

Vậy B = 22010 - (22010 - 1)

=> B = 22010 - 22010  + 1

=> B = 1

18 tháng 9 2016

Ta có: B = 22010  -   22009  -  22008  -......- 2 -1

=> B = 22010 - (1 + 2 + 22 + ..... + 22009)

Đặt A = 1 + 2 + 22 + .... + 22009

=> 2A = 2 + 22 + .... + 22010

=> 2A - A = 22010 - 1

=> A = 22010 - 1

Vậy B = 22010 - (22010 - 1)

=> B = 22010 - 22010  + 1

=> B = 1

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)

10 tháng 7 2019

Bạn gõ lại đề đi :v

Đọc chả hiểu đề gì cả ... đề k có x

Mà phía dưới có cái đáp số x= ... là sao ??

10 tháng 7 2019

a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)

(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)

(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)

x=\(\frac{1}{3}:\frac{13}{12}\)

x=\(\frac{4}{13}\)

25 tháng 3 2018

Bài nhìn vô muốn xỉu rồi ='((

1. a) \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)

\(=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{91.94}+\frac{3}{94.97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{97}\right)=\frac{2}{3}.\frac{96}{97}=\frac{64}{97}\)

b) Bạn tự làm, làm nữa chắc xỉu =((( Khi nào rảnh mình sẽ làm, nếu bạn cần

2 ) 

a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{1005}{2011}:2=\frac{1005}{4022}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{1005}{4022}=\frac{3017}{4020+2}\)

\(\Rightarrow x=4020\)

24 tháng 3 2018

tu ma lam nguoi ta con gap hon min nhieu

19 tháng 3 2019

Bài 2:

a) \(\frac{4}{9}+x=\frac{-5}{3}\)

\(\Leftrightarrow x=\frac{-5}{3}-\frac{4}{9}\)

\(\Leftrightarrow x=\frac{-15}{9}-\frac{4}{9}\)\(=\frac{-19}{9}\)

Vậy: \(x=\frac{-19}{9}\)

b) \(2,4:\left(\frac{1}{2}.x-\frac{3}{4}\right)=\frac{3}{10}\)

\(\Leftrightarrow\frac{24}{10}:\left(\frac{1}{2}x-\frac{3}{4}\right)=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{2}x-\frac{3}{4}=\frac{24}{10}:\frac{3}{10}=\frac{24}{10}.\frac{10}{3}\)\(=8\)

\(\Leftrightarrow\frac{1}{2}x=8+\frac{3}{4}=\frac{35}{4}\)

\(\Leftrightarrow x=\frac{35}{4}:\frac{1}{2}=\frac{35}{4}.2=\frac{35}{2}\)

c) \(\frac{x+1}{-8}=\frac{-2}{x+1}\)

\(\Rightarrow\left(x+1\right).\left(x+1\right)=\left(-2\right).\left(-8\right)\)

\(\Leftrightarrow\left(x+1\right)^2=16=4^2=\left(-4\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy: \(x\in\left\{3;-5\right\}\)

DD
18 tháng 5 2021

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)

\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(B=1-\frac{1}{101}=\frac{100}{101}\)

DD
18 tháng 5 2021

\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(C=3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)

\(C=3\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{27}{20}\)

\(D=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)

\(D=\frac{7}{2}B=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)

25 tháng 3 2018

x=2009 dễ mà

23 tháng 3 2018

mk làm câu c cho nó dễ

c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010

=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010

=1-1/x+1=2009/2010

=1/x+1=1-2009/2010

=1/x+1=1/2010

=) x+1=2010

x         =2010-1

x         =2009

9 tháng 4 2018

\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(100=2x+4\)

\(\Leftrightarrow\)\(2x=96\)

\(\Leftrightarrow\)\(48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)

\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(49=x+1\)

\(\Leftrightarrow\)\(x=48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

13 tháng 8 2015

a)  \(=\frac{1}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}.\frac{6.6}{5.7}=\frac{6}{2.7}=\frac{3}{7}\)

B) \(=\frac{70}{11}+\frac{1}{9}-\frac{37}{11}-\frac{1}{9}=\left(\frac{70}{11}-\frac{37}{11}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)=\frac{33}{11}+0=3\)

BÀI 2:

A) \(\Leftrightarrow\frac{7}{2}x-\frac{x}{2}+\frac{2x}{2}=\frac{7}{2}.\frac{5}{6}\)

\(\Leftrightarrow\frac{7x-x+2x}{2}=\frac{35}{12}\)

\(\Leftrightarrow\frac{8x}{2}=\frac{35}{12}\)

\(\Leftrightarrow8x.12=35.2\Leftrightarrow96x=70\Leftrightarrow x=\frac{70}{96}=\frac{35}{48}\)

b) \(\left(x-\frac{3}{1.2}\right)+\left(x-\frac{3}{2.3}\right)+...+\left(x-\frac{3}{99.100}\right)=1\)

\(x-\frac{3}{1.2}+x-\frac{3}{2.3}+....x+\frac{3}{99.100}=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)-3\left(\frac{1}{1.2}+\frac{1}{1.3}+....+\frac{1}{99.100}\right)=1\)

ngoặc 1 có 99 số hạng x

\(\Leftrightarrow99x-3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=1\)

\(\Leftrightarrow99x-3\left(1-\frac{1}{100}\right)=1\)

\(\Leftrightarrow99x-3.\frac{99}{100}=1\)

\(\Leftrightarrow99x=1+\frac{3.99}{100}\)

\(\Leftrightarrow99x=\frac{397}{100}\)

\(\Leftrightarrow x=\frac{397}{100.99}=\frac{397}{9900}\)

 

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}