Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm bài 2 trước nhé
\(\frac{x+2}{2}=\frac{72}{x+2}\)
\(=>\left(x+2\right)^2=72.2=144=12^2\)
\(=>x+2=12\)
\(=>x=12-2=10\)
a, -1+3 - 5 + 7 - ...... +97 - 99
[ - 1+ 3] - [ 5 + 7] - .... - [ 95 + 97] - 99
[2 - 12] - ..... - [184 - 192] - 99
còn lại tự giải
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
a, \(\frac{x+1}{5}+\frac{x+1}{7}=\frac{x+1}{9}\)
\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{7}-\frac{x+1}{9}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
b, \(\frac{x+4}{96}+\frac{x+3}{97}=\frac{x+2}{98}+\frac{x+1}{99}\)
\(\Leftrightarrow\left(\frac{x+4}{96}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+2}{98}+1\right)+\left(\frac{x+1}{99}+1\right)\)
\(\Leftrightarrow\frac{x+100}{96}+\frac{x+100}{97}=\frac{x+100}{98}+\frac{x+100}{99}\)
\(\Leftrightarrow\frac{x+100}{96}+\frac{x+100}{97}-\frac{x+100}{98}-\frac{x+100}{99}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{96}+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}\right)=0\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
a) x + 1/5 + x + 1/7 = x + 1/9
<=> 1/5x + 1/5 + 1/7x + 1/7 = 1/9x + 1/9
<=> (1/5x + 1/7x) + (1/5 + 1/7) = 1/9x + 1/9
<=> 12/35x + 12/35 = 1/9x + 1/9
<=> 12/35x + 12/35 - 1/9x = 1/9
<=> 73/315x + 12/35 = 1/9
<=> 73/315x = 1/9 - 12/35
<=> 73/315x = -73/315
<=> x = 73/315 : -73/315 = -1
=> x = -1
b) làm tương tự
\(x-\frac{37}{45}=\frac{4}{5.9}+\frac{4}{9.13}+.....+\frac{4}{41.45}\)
\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)
\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{45}\)
\(\Rightarrow x-\frac{37}{45}=\frac{8}{45}\)
\(\Rightarrow x=\frac{37}{45}+\frac{8}{45}\)
\(\Rightarrow x=1\)
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
D. Tìm x thuộc Z biết
x+(x+1)+(x+2)+....+2016+2017=2017
=> ( x + x + x + ..+ x ) + ( 1 + 2 + 3+...+2016 + 2017 ) = 2017
<=> 2017x + 2035153 = 2017
=> 2017x = -2033136
=> x = -1008
Vậy ...
cảm ơn bạn nhưng bạn có biết những câu hỏi còn lại ko
1+(-2)+3+(-4)+.......+19+(-20)
=(1+(-2))+(3+(-4))+....+(19+(-20)) có 10 nhóm như vậy
=(-1)+(-1)+.....+(-1)
=-10
a) 1 + (-2) + 3 + (-4) + ... + 19 + (-20)
= 1 - 2 + 3 - 4 + ... + 19 - 20
= ( 1 + 3 + ... + 19 ) - ( 2 + 4 + ... + 20 )
Số số hạng VT : ( 19 - 1 ) : 2 + 1 = 10 ( số )
Tổng VT = ( 19 + 1 ) . 10 : 2 = 100
Số số hạng VP : ( 20 - 2 ) : 2 + 1 = 10 ( số )
Tổng VP là : ( 20 + 2 ) x 10 : 2 = 110
Ta có biểu thức :
100 - 110
= -10