Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)
Cái B TT nhé
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)
D TT
E mk thấy nó ss ớ
a: \(=\dfrac{2}{3}\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}\right)+\dfrac{2}{2006}\)
\(=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{1}{2003}=\dfrac{1}{180}+\dfrac{1}{2003}=\dfrac{2183}{180\cdot2003}\)
b: \(=\dfrac{5}{4}\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}\right)+\dfrac{5}{2006}\)
\(=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)
\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2006}=\dfrac{1}{64}+\dfrac{5}{2006}=\dfrac{1163}{64192}\)
c: \(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}+\dfrac{3}{17\cdot20}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{3}\cdot\dfrac{9}{20}=\dfrac{3}{20}\)
a: \(A=\dfrac{3^6\cdot3^8\cdot5^4-3^{13}\cdot5^{13}\cdot5^{-9}}{3^{12}\cdot5^6+5^6\cdot3^{12}}\)
\(=\dfrac{3^{14}\cdot5^4-3^{13}\cdot5^4}{2\cdot3^{12}\cdot5^6}\)
\(=\dfrac{3^{13}\cdot5^4\cdot\left(3-1\right)}{2\cdot3^{12}\cdot5^6}=\dfrac{3}{5^2}=\dfrac{3}{25}\)
c: \(C=\dfrac{\dfrac{27}{64}+\dfrac{125}{64}-5\cdot\dfrac{16-15}{12}}{\dfrac{25}{64}+\dfrac{4}{9}-\dfrac{5}{6}}\)
\(=\dfrac{47}{24}:\dfrac{1}{576}=47\cdot24=1128\)
1: \(\dfrac{11}{24}-\dfrac{5}{41}+\dfrac{13}{24}+0,5-\dfrac{36}{41}\)
\(=\left(\dfrac{11}{24}+\dfrac{13}{24}\right)-\left(\dfrac{5}{41}+\dfrac{36}{41}\right)+\dfrac{1}{2}\)
\(=1-1+\dfrac{1}{2}=\dfrac{1}{2}\)
2: \(12:\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2\)
\(=12:\left(\dfrac{9}{12}-\dfrac{10}{12}\right)^2\)
\(=12:\left(-\dfrac{1}{12}\right)^2=12:\dfrac{1}{144}=12\cdot144=1368\)
3: \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(0,8-\dfrac{3}{4}\right)^2\)
\(=\dfrac{12+8-3}{12}\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
\(=\dfrac{17}{12}\cdot\left(\dfrac{16-15}{20}\right)^2\)
\(=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)
4: \(16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)+28\dfrac{2}{7}:\dfrac{3}{5}\)
\(=\dfrac{5}{3}\cdot\left(-16-\dfrac{2}{7}\right)+\dfrac{5}{3}\cdot\left(28+\dfrac{2}{7}\right)\)
\(=\dfrac{5}{3}\left(-16-\dfrac{2}{7}+28+\dfrac{2}{7}\right)\)
\(=12\cdot\dfrac{5}{3}=20\)
5: \(\left(2^2:\dfrac{4}{3}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\left(4\cdot\dfrac{3}{4}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\dfrac{5}{2}\cdot\dfrac{6}{5}-17=3-17=-14\)
6: \(\left(\dfrac{1}{3}\right)^{50}\cdot\left(-9\right)^{25}-\dfrac{2}{3}:4\)
\(=\left(\dfrac{1}{3}\right)^{50}\cdot\left(-1\right)\cdot3^{50}-\dfrac{2}{3\cdot4}\)
\(=-1-\dfrac{2}{12}=-1-\dfrac{1}{6}=-\dfrac{7}{6}\)
a. \(\dfrac{11}{24}-\dfrac{5}{41}+\dfrac{13}{24}+0,5-\dfrac{36}{41}\)
\(=\left(\dfrac{11}{24}+\dfrac{13}{24}\right)+\left(\dfrac{-5}{41}-\dfrac{36}{41}\right)+0,5\)
\(=1+\left(-1\right)+0,5\)
\(=0,5\)
b. \(-12:\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2\)
\(=-12:\left(\dfrac{-1}{12}\right)^2\)
\(=-12:\dfrac{1}{144}\)
\(=-1728\)
c. \(\dfrac{7}{23}.\left[\left(-\dfrac{8}{6}\right)-\dfrac{45}{18}\right]\)
\(=\dfrac{7}{23}.\dfrac{-23}{6}\)
\(=\dfrac{-7}{6}\)
d. \(23\dfrac{1}{4}.\dfrac{7}{5}-13\dfrac{1}{4}:\dfrac{5}{7}\)
\(=23\dfrac{1}{4}.\dfrac{7}{5}-13\dfrac{1}{4}.\dfrac{7}{5}\)
\(=\left(23\dfrac{1}{4}-13\dfrac{1}{4}\right).\dfrac{7}{5}\)
\(=10.\dfrac{7}{5}\)
\(=14\)
e. \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(0,8-\dfrac{3}{4}\right)^2\)
\(=\dfrac{17}{12}.\left(\dfrac{1}{20}\right)^2\)
\(=\dfrac{17}{12}.\dfrac{1}{400}=\dfrac{17}{4800}\)
Bài 2:
1: \(\dfrac{x}{12}-\dfrac{5}{6}=\dfrac{1}{12}\)
=>\(\dfrac{x}{12}=\dfrac{1}{12}+\dfrac{5}{6}=\dfrac{1}{12}+\dfrac{10}{12}=\dfrac{11}{12}\)
=>x=11
2: \(\dfrac{2}{3}-1\dfrac{4}{15}x=-\dfrac{3}{5}\)
=>\(\dfrac{2}{3}-\dfrac{19}{15}x=-\dfrac{3}{5}\)
=>\(\dfrac{19}{15}x=\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10+9}{15}=\dfrac{19}{15}\)
=>\(x=\dfrac{19}{15}:\dfrac{19}{15}=1\)
3: \(\dfrac{\left(-3\right)^x}{81}=-27\)
=>\(\left(-3\right)^x=\left(-3\right)^3\cdot\left(-3\right)^4=\left(-3\right)^7\)
=>x=7
4: \(\left|x+0,237\right|=0\)
=>x+0,237=0
=>x=-0,237
5: \(\left(x-1\right)^2=25\)
=>\(\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
6: \(\left|2x-1\right|=5\)
=>\(\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
7: \(\left(x-1\right)^3=-\dfrac{8}{27}\)
=>\(\left(x-1\right)^3=\left(-\dfrac{2}{3}\right)^3\)
=>\(x-1=-\dfrac{2}{3}\)
=>\(x=-\dfrac{2}{3}+1=\dfrac{1}{3}\)
8: \(1\dfrac{2}{3}:\dfrac{x}{4}=6:0,3\)
=>\(\dfrac{5}{3}:\dfrac{x}{4}=20\)
=>\(\dfrac{20}{3x}=20\)
=>3x=20/20=1
=>\(x=\dfrac{1}{3}\)
9: \(2\dfrac{2}{3}:x=1\dfrac{7}{9}:2\dfrac{2}{3}\)
=>\(\dfrac{\dfrac{8}{3}}{x}=\dfrac{\dfrac{16}{9}}{\dfrac{8}{3}}\)
=>\(\dfrac{16}{9}\cdot x=\dfrac{8}{3}\cdot\dfrac{8}{3}=\dfrac{64}{9}\)
=>16x=64
=>x=64/16=4
Bài 3:
1: Ta có: x-24=y
=>x-y=24
mà \(\dfrac{x}{7}=\dfrac{y}{3}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)
=>\(x=6\cdot7=42;y=6\cdot3=18\)
2: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}\)
mà x-y=48
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{x-y}{5-7}=\dfrac{48}{-2}=-24\)
=>\(x=-24\cdot5=-120;y=-24\cdot7=-168;z=-24\cdot2=-48\)
3: \(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}\)
mà x-y=4009
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{4009+2}{4011}=1\)
=>\(x-1=2005;3-y=2006\)
=>x=2005+1=2006; y=3-2006=-2003
5: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)
mà 2x+3y-z=-14
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x+3y-z}{2\cdot3+3\cdot5-7}=\dfrac{-14}{14}=-1\)
=>\(x=-3;y=-5;z=-7\)
Bạn tách ra từng CH khác nhau đi nhé. Gộp 1 trong tất cả rất khó nhìn và lâu.
Lời giải:
a)
\(\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{7}-\frac{2}{9}+\frac{2}{11}}{\frac{8}{3}-\frac{8}{5}+\frac{8}{7}-\frac{8}{9}+\frac{8}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}{8\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}\) \(=\frac{2}{8}=\frac{1}{4}\)
b)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{50}-1\right)\left(\frac{1}{51}-1\right)\)
\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}....\frac{1-50}{50}.\frac{1-51}{2}=\frac{(-1)(-2)(-3)...(-49)(-50)}{2.3.4....50.51}\)
\(=\frac{(-1)^{50}.1.2.3....49.50}{2.3.4...50.51}=\frac{1}{51}\)
a) \(A=\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=\left(\dfrac{5}{15}+\dfrac{9}{15}+\dfrac{1}{15}\right)-\left(\dfrac{27}{36}+\dfrac{8}{36}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=1-1+\dfrac{1}{72}\)
\(=0+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(B=\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)
\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{5}{9}-\dfrac{5}{9}\right)-\left(\dfrac{2}{9}-\dfrac{7}{13}+\dfrac{2}{11}\right)\)
\(=0+0+0-\left(\dfrac{286}{1287}-\dfrac{693}{1287}+\dfrac{234}{1287}\right)\)
\(=-\left(-\dfrac{173}{1287}\right)\)
\(=\dfrac{173}{1287}\)
c) \(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{-49}{50}\)
2.
\(A=\dfrac{36}{1\cdot3\cdot5}+\dfrac{36}{3\cdot5\cdot7}+...+\dfrac{36}{25\cdot27\cdot29}\\ =9\cdot\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\\ =9\cdot\dfrac{1}{3}-9\cdot\dfrac{1}{783}\\ =3-\dfrac{1}{87}< 3\)
Vậy \(A< 3\)
b,
\(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{50}\\ B< 2-\dfrac{1}{50}< 2\)
Vậy \(B< 2\)
\(P=\dfrac{2}{60\cdot63}+\dfrac{2}{63\cdot66}+...+\dfrac{2}{117\cdot120}+\dfrac{2}{2011}\\ =\dfrac{2}{3}\cdot\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)\)
\(Q=\dfrac{5}{40\cdot44}+\dfrac{5}{44\cdot48}+...+\dfrac{5}{76\cdot80}+\dfrac{5}{2011}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\)
\(\dfrac{3}{2011}< \dfrac{4}{2011}\Rightarrow\dfrac{1}{2}+\dfrac{3}{2011}< \dfrac{1}{2}+\dfrac{4}{2011}\left(1\right)\)
\(\dfrac{2}{3}< \dfrac{5}{4}\left(2\right)\)
Từ (1) và (2) ta có: \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)< \dfrac{5}{4}\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\Leftrightarrow P< Q\)
Vậy P < Q