K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

\(\sqrt{10+2\sqrt{17-4\sqrt{9+4\sqrt{5}}}}\)

\(=\sqrt{10+2\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}}\)

\(=\sqrt{10+2\sqrt{17-4\left(\sqrt{5}+2\right)}}\)

\(=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\)

\(=\sqrt{10+2\sqrt{\left(\sqrt{5}-2\right)^2}}\)

\(=\sqrt{10+2\left(\sqrt{5}-2\right)}\)

\(=\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\sqrt{5}+1\)

6 tháng 7 2018

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)

\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}\)

\(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)

NV
17 tháng 6 2019

\(A=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)\left(5-2\sqrt{6}\right)^2}{9\sqrt{3}-11\sqrt{2}}\)

\(=\left(\sqrt{3}+\sqrt{2}\right)\left(9\sqrt{3}+11\sqrt{3}\right)\left(5-2\sqrt{6}\right)^2\)

\(=\left(49+20\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2=\left(5+2\sqrt{6}\right)^2\left(5-2\sqrt{6}\right)^2=1\)

\(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)

\(=\sqrt{4+5}=3\)

\(A=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)

1 tháng 9 2023

a) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}\cdot1+1^2}+\left|\sqrt{2}-2\right|\)

\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{2}-2\right)\)

\(=\left|\sqrt{2}+1\right|-\sqrt{2}+2\)

\(=\sqrt{2}+1-\sqrt{2}+2\)

\(=3\)

b) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)

\(=\dfrac{1}{5}\cdot5\sqrt{2}-2\cdot4\sqrt{6}-\sqrt{\dfrac{30}{15}}+\sqrt{\dfrac{144}{6}}\)

\(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}\)

\(=-8\sqrt{6}+2\sqrt{6}\)

\(=-6\sqrt{6}\)

c) \(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)

\(=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}-2\right]\left[\dfrac{4\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+4\right]\)

\(=\left(\sqrt{5}-1-2\right)\left(\dfrac{4\left(1-\sqrt{5}\right)}{1-5}+4\right)\)

\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}-1+4\right)\)

\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)\)

\(=\left(\sqrt{5}\right)^2-3^2\)

\(=-4\)

1 tháng 9 2023

a) \(\sqrt[]{3+2\sqrt[]{2}}+\sqrt[]{\left(\sqrt[]{2}-2\right)^2}\)

\(=\sqrt[]{2+2\sqrt[]{2}.1+1}+\left|\sqrt[]{2}-2\right|\)

\(=\sqrt[]{\left(\sqrt[]{2}+1\right)^2}+\left(2-\sqrt[]{2}\right)\) \(\left(\left(\sqrt[]{2}\right)^2=2< 2^2=4\right)\)

\(=\left|\sqrt[]{2}+1\right|+2-\sqrt[]{2}\)

\(=\sqrt[]{2}+1+2-\sqrt[]{2}\)

\(=3\)

24 tháng 6 2021

a)\(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

\(=\sqrt[3]{1+3\sqrt{2}+3\sqrt{2^2}+2\sqrt{2}}-\sqrt[3]{2\sqrt{2}-3\sqrt{2^2}+3\sqrt{2}-1}\)

\(=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[.3]{\left(\sqrt{2}-1\right)^3}\)

\(=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)

b)\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)

\(\Leftrightarrow B^3=5+2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)

\(\Leftrightarrow B^3=10+3.\sqrt[3]{-27}.B\)

\(\Leftrightarrow B^3+9B-10=0\)

\(\Leftrightarrow\left(B-1\right)\left(B^2+B+10\right)=0\)

\(\Leftrightarrow B=1\) (vì \(B^2+B+10>0\))

c)\(C=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)

\(\Leftrightarrow2C=\sqrt[3]{8\sqrt{5}+16}-\sqrt[3]{8\sqrt{5}-16}=\sqrt[3]{1+3\sqrt{5}+3\sqrt{5^2}+5\sqrt{5}}-\sqrt[3]{5\sqrt{5}-3\sqrt{5^2}+3\sqrt{5}-1}\)

\(=\sqrt[3]{\left(1+\sqrt{5}\right)^3}-\sqrt[3]{\left(\sqrt{5}-1\right)^3}\)

\(=1+\sqrt{5}-\left(\sqrt{5}-1\right)\)

\(\Rightarrow C=1\)

d) \(D=\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)

\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{9^2}-\sqrt[3]{6}+\sqrt[3]{2^2}\right)}\left(\dfrac{1+\sqrt{2}}{\sqrt{\left(1-\sqrt{3}\right)^2}}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\right)\)

\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{5}.\dfrac{1+\sqrt{2}}{\left|1-\sqrt{3}\right|}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)

\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(\sqrt{2}\right)^2-1}{\left(\sqrt{3}\right)^2-1}\)

\(=\sqrt[3]{3}+\sqrt[3]{2}\)

Vậy...

24 tháng 6 2021

Khiếp CTV kìa sợ quá ;-;

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Lời giải:

a. \(\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}.\sqrt{1}+1}=\sqrt{(\sqrt{5}-1)^2}=\sqrt{5}-1\)

b. \(\sqrt{7-4\sqrt{3}}=\sqrt{4-2\sqrt{4}.\sqrt{3}+3}=\sqrt{(\sqrt{4}-\sqrt{3})^2}=\sqrt{4}-\sqrt{3}=2-\sqrt{3}\)

c.

\(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\)

\(=\sqrt{(\sqrt{2}-1)^2}-\sqrt{(\sqrt{4}-\sqrt{2})^2}\)

\(=|\sqrt{2}-1|-|\sqrt{4}-\sqrt{2}|=\sqrt{2}-1-(2-\sqrt{2})=2\sqrt{2}-3\)

d.

\(=\sqrt{13+30\sqrt{2+\sqrt{(\sqrt{8}+1)^2}}}=\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)

\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\sqrt{(\sqrt{2}+1)^2}}\)

\(=\sqrt{13+30(\sqrt{2}+1)}=\sqrt{43+30\sqrt{2}}=\sqrt{18+2\sqrt{18.25}+25}\)

\(=\sqrt{(\sqrt{18}+\sqrt{25})^2}=\sqrt{18}+\sqrt{25}=5+3\sqrt{2}\)

 

 

a) \(\sqrt{6-2\sqrt{5}}=\sqrt{5}-1\)

b) \(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)

c) \(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2}-1-2+\sqrt{2}=-3+2\sqrt{2}\)

d) Ta có: \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{13+30\sqrt{2+1+2\sqrt{2}}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}\)

\(=5+3\sqrt{2}\)

25 tháng 11 2016

 kho wa do

20 tháng 7 2021

\(1,\left(2+\sqrt{3}\right)\left(7-4\sqrt{3}\right)\\ =14-8\sqrt{3}+7\sqrt{3}-12\\ =2-\sqrt{3}\\ 2,\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\sqrt{3}\\ =\left(\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{2}\right)\sqrt{3}\\ =\left(\left|\sqrt{3}-\sqrt{2}\right|+\sqrt{2}\right)\sqrt{3}\\ =\left(\sqrt{3}-\sqrt{2}+\sqrt{2}\right)\sqrt{3}\\ =\sqrt{3}.\sqrt{3}\\ =3\\ 3,\sqrt{4+2\sqrt{3}}-\sqrt{5-2\sqrt{6}}+\sqrt{2}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{2}\\ =\left|\sqrt{3}+1\right|-\left|\sqrt{3}-\sqrt{2}\right|+\sqrt{2}\\ =\sqrt{3}+1-\sqrt{3}-\sqrt{2}+\sqrt{2}\\ =1\\ 4,\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\\ =\sqrt{\left(1+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}\\ =\left|1+\sqrt{2}\right|+\left|\sqrt{4}-\sqrt{2}\right|\\ =1+\sqrt{2}+\sqrt{4}-\sqrt{2}\\ =1+\sqrt{4}\\ 5,2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\\ =2+\sqrt{17-8-4\sqrt{5}}\\ =2+\sqrt{\left(\sqrt{5}-2\right)^2}\\ =2+\left|\sqrt{5}-2\right|\\ =2+\sqrt{5}-2\\ =\sqrt{5}\)