Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=6^6+6^3+3^3+3^6/-73=2^6.3^6+2^3.3^3.3^3+3^6/-73=2^6.3^6+2^3.3^6+3^6/-73=(2^6+2^3+1).3^6/-73=73.3^6/-73=-(3^6)=...
a)\(\dfrac{6^6+6^3.3^3+3^6}{-73}\)\(=\dfrac{2^6.3^6+2^3.3^3.3^3+3^6}{-73}=\dfrac{2^6.3^6+2^3.3^6+3^6.1}{-73}\)
\(=\dfrac{3^6.\left(2^6+2^3+1\right)}{-73}=\dfrac{3^6\left(64+8+1\right)}{-73}=^{ }\)\(\dfrac{3^6.73}{-73}=\dfrac{3^6}{-1}=-3^6\)
b)\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=\dfrac{2^{40}}{2^{30}}=2^{10}=1024\)
c)\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}=\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
Bài 1:
a)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{(2^3)^{20}+(2^2)^{20}}{(2^2)^{25}+(2^6)^{5}}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}(2^{20}+1)}{2^{30}(2^{20}+1)}=2^{10}\)
b)
\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{(3^2.5)^{10}.5^{20}}{(3.5^2)^{15}}=\frac{3^{20}5^{30}}{3^{15}.5^{30}}=\frac{3^{20}}{3^{15}}=3^5\)
Bài 2:
Ta thấy $(x-2)^{2012}=[(x-2)^{1006}]^2\geq 0$ với mọi $x\in\mathbb{R}$
$|b^2-9|^{2014|\geq 0$ với mọi $b\in\mathbb{R}$ (tính chất trị tuyệt đối)
Do đó để tổng của chúng bằng $0$ thì:
\((x-2)^{2012}=|b^2-9|^{2014}=0\)
\(\Leftrightarrow \left\{\begin{matrix} x-2=0\\ b^2-9=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ b=\pm 3\end{matrix}\right.\)
Vậy.......
M=\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{4^{20}\left(2^{20}+1\right)}{4^{25}+4^{15}}=\dfrac{4^{20}\left(2^{20}+1\right)}{4^{15}\left(4^{10}+1\right)}=\dfrac{2^{20}+1}{4^{10}+1}\)
T=\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{9^{10}.5^{30}}{25^{15}.3^{15}}=\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
a, \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.2^8.5^4}{5^{10}.2^{10}}=\dfrac{1}{5^2.2^2}=\dfrac{1}{25.4}=\dfrac{1}{100}\)
b, \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
c, \(\dfrac{45^{10}.5^{20}}{75^5}=\dfrac{5^{10}.3^{20}.5^{20}}{3^5.5^{10}}=5^{20}.3^{15}\)
d, \(\left(0,8\right)^5=\left(0,1\right)^5.8^5=\dfrac{1}{100000}.32768=0,32768\)
e, \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=3^2=9\)
d, \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=2^{10}=1024\)
Chúc bạn học tốt!!!
\(\text{a) }\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot\left(5\cdot4\right)^4}{\left(5^2\right)^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{5^8\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{25\cdot4}=\dfrac{1}{100}\)
\(\text{b) }\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{2^7\cdot3^6}{2^{11}\cdot3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
\(\text{c) }\dfrac{45^{10}\cdot5^{20}}{75^5}=\dfrac{\left(5\cdot9\right)^{10}\cdot5^{20}}{\left(25\cdot3\right)^5}=\dfrac{5^{10}\cdot9^{10}\cdot5^{20}}{25^5\cdot3^5}=\dfrac{5^{10}\cdot5^{20}\cdot\left(3^2\right)^{10}}{\left(5^2\right)^5\cdot3^5}=\dfrac{5^{30}\cdot3^{20}}{5^{10}\cdot3^5}=5^{20}\cdot3^{15}\)
\(\text{d) }\left(0.8\right)^5=\left(\dfrac{8}{10}\right)^5=\left(\dfrac{4}{5}\right)^5=\dfrac{4^5}{5^5}=\dfrac{64}{3125}\)
\(\text{e) }\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\dfrac{2^{15}\cdot3^8}{2^6\cdot2^9\cdot3^6}=\dfrac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=3^2=9\)
\(f\text{) }\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
a, (1/5)5x(3)5
=1/3125.243
=243/3125
b, (0,125)^3.512
=1/512.512
=1
c,(0,25)^4.1024
=1/256.1024
=4
2,hầu như chịu hết
a ) \(\left(-\frac{40}{52}.0,32.\frac{17}{20}\right):\frac{64}{75}\)
= \(\left(-\frac{16}{65}.\frac{17}{20}\right):\frac{64}{75}\)
= \(\left(-\frac{68}{325}\right):\frac{64}{75}\)
= \(\frac{-51}{208}\)
b ) \(-\frac{10}{11}.\frac{8}{9}+\frac{7}{18}.\frac{10}{11}\)
= \(\frac{10}{11}.\left(-\frac{8}{9}+\frac{7}{18}\right)\)
= \(\frac{10}{11}.\left(-\frac{1}{2}\right)\)
= \(\frac{-5}{11}\)
c ) \(\frac{45^{10}.5^{20}}{75^{15}}\)
= \(\frac{5^{10}.3^{20}.5^{20}}{5^{30}.3^{15}}\)
= \(\frac{5^{30}.3^{20}}{5^{30}.3^{15}}\)
= 3 5
= 243
d ) ( - 0,125 ) 3 . 80 4
= -80000
a: \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
b: \(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5\)
a)\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
b)\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{9^{10}\cdot5^{30}}{3^{15}\cdot5^{30}}=\dfrac{3^{20}}{3^{15}}=3^5=243\)