Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\frac{2}{3}=2\frac{1}{2}\)
\(x+\frac{2}{3}=\frac{5}{2}\)
\(x=\frac{5}{2}-\frac{2}{3}\)
\(x=\frac{11}{6}\)
\(8,75.x+1,25.x=26,3\)
\(x.\left(8,75+1,25\right)=26,3\)
\(x.10=26,3\)
\(x=26,3\div10\)
\(x=2,63\)
Bài 1: tính: a) 8 và 5/9 : 5 và 1/2 b) 7 và 3/4 - 2 và 1/8 c) 1 và 3/4 x 2 và 5/6 d) 7 - 2 và 2/3 e) 2 và 3/7 x 1 và 3/4 g) 5 và 1/3 : 3 và 1/5 Bài 2: tìm X: X : 3 và 1/3= 2 và 2/5 + 7/10 Và là biểu thị cho hỗn số nhé
(y - 2/5) x 1/2 =1
y - 2/5 =1:1/2
y-2/5 = 1x2/1
y-2/5 =2
y =2+2/5
y =2/1 +2/5
y =10/5+2/5
y = 12/5
\(a,x-\frac{5}{6}:1\frac{1}{6}=0,125\)
\(x-\frac{5}{6}:\frac{7}{6}=\frac{1}{8}\)
\(x-\frac{5}{7}=\frac{1}{8}\)
\(x=\frac{1}{8}+\frac{5}{7}\) \(x=\frac{47}{56}\)
\(b,\left(1-\frac{2}{10}+x+\frac{1}{5}\right):\left(1\frac{1}{3}-\frac{2}{3}+3\frac{1}{3}\right)-1=1\frac{1}{2}\)
\(\left(1-\frac{1}{5}+x+\frac{1}{5}\right):\left(\frac{4}{3}-\frac{2}{3}+\frac{10}{3}\right)-1=\frac{3}{2}\)
\(\left(\frac{4}{5}+x+\frac{1}{5}\right):4=\frac{3}{2}+1\)
\(\left(1+x\right):4=\frac{5}{2}\)
\(1+x=\frac{5}{2}.4\)
\(1+x=10\)
\(x=10-1\)
\(x=9\)
bài2 \(x\times\dfrac{15}{16}-x\times\dfrac{4}{16}=2\)
\(x\times\dfrac{11}{16}=2\)
\(x=2:\dfrac{11}{16}\)
\(x=\dfrac{32}{11}\)
Bài 1 :
\(\dfrac{x}{16}\times\left(2017-1\right)=2\)
\(\dfrac{x}{16}\times2016=2\)
\(\dfrac{x}{16}=\dfrac{2}{2016}\)
\(x=\dfrac{2}{2016}\times16\)
\(x=\dfrac{1}{63}\)
Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)
=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)
=> x = 9
Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)
=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)
=> \(\frac{15}{16}:x=\frac{11}{12}\)
=> \(x=\frac{45}{44}\)
Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)
=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)
=> \(\frac{1}{x+1}=\frac{1}{800}\)
=> x = 799
Bài 2 :
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)
Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\) (2)
Thay (1) và (2) vào biểu thức (*) ta được :
\(\frac{15}{16}:x=\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)
\(\Leftrightarrow x=\frac{45}{44}\)
Vậy : \(x=\frac{45}{44}\)
\(x\frac{1}{3}+2\frac{3}{4}=6\frac{1}{12}\)
\(\Rightarrow x+\frac{1}{3}+\frac{11}{4}=\frac{73}{12}\)
\(\Rightarrow x+\frac{37}{12}=\frac{73}{12}\)
\(\Rightarrow x=\frac{73}{12}-\frac{37}{12}=\frac{36}{12}=3\)
\(\frac{1}{2}:3+x=1\frac{2}{3}\)
\(\Rightarrow\frac{1}{6}+x=\frac{5}{3}\)
\(\Rightarrow x=\frac{5}{3}-\frac{1}{6}=\frac{10}{6}-\frac{1}{6}=\frac{9}{6}=\frac{3}{2}\)