Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 23850
b,11850 hoặc 14850 hoặc 17850
c,14400 ; 14430 ;14460 ; 14490 ; 14415 ; 14445 ; 14475
d,5274
23x5y chia hết cho 2,5,9
Do 23x5y chia hết cho 2 và 5
\(\Rightarrow y=0\)
Thay y = 0 ta có:
23x50 chia hết cho 9
=> 2+3+x+5+0 chia hết cho 9
=> 10+x chia hết cho 9
=> x=8
Vậy số càn ìm là 23850
b) 1x85y chia hết cho 2,3,5
1x85y chia hết cho 2,5
=> y=0
Thay y=0 ta có:
1x850 chia hết cho 3
=> 1+x+8+5+0 chia hết cho 3
=> 13+x chia hết cho 3
\(\Rightarrow x\in\left\{2;5;8\right\}\)
Vậy các số cần tìm là 12850,15850,18850
c) 144xy chia hết cho 3,5
Vì 144xy chia hết cho 5
\(\Rightarrow y\in\left\{0;5\right\}\)
- Nếu y = 0 ta có: 144x0 chia hết cho 3 => 9+x chia hết cho 3 \(\Rightarrow x\in\left\{0;3;6;9\right\}\)
- Nếu y = 5 ta có: 144x5 chia hết cho 3 => 14+x chia hết cho 3 \(\Rightarrow x\in\left\{1;4;7\right\}\)
d) 52xy chia hết cho 9,2 và chia 5 dư 4
Do 52xy chia hết 2 và chia 5 dư 4
=> y = 4
Thay y = 4 ta có:
52x4 chia hết cho 9
=> 11 + x chia hết cho 9
=> x = 7
a) Để 23x5y chia hết cho 2 và 5 thì y = 0
Ta lại có: 2 + 3 + x + 5 + 0 \(⋮\) 9
=> 10 + x \(⋮\) 9
=> x = 8
Vậy x = 8, y = 0
b) Để 144xy chia hết cho 5 thì y \(\in\) {0; 5}
Với y = 0, ta có: 1 + 4 + 4 + x + 0 \(⋮\) 3
=> 9 + x \(⋮\) 3
=> x \(\in\) {0; 3; 6; 9}
Với y = 5, ta có: 1 + 4 + 4 + x + 5 \(⋮\) 3
=> 14 + x \(⋮\) 3
=> x \(\in\) {1; 4; 7}
Bài 4: Để tìm các chữ số a, b thỏa mãn các điều kiện, ta sẽ kiểm tra từng trường hợp.
a. Để số 4a12b chia hết cho 2, 5 và 9, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 4 + a + 1 + 2 + 0 = 7 + a. Để 7 + a chia hết cho 9, ta có a = 2.
- Nếu b = 5, thì tổng các chữ số là 4 + a + 1 + 2 + 5 = 12 + a. Để 12 + a chia hết cho 9, ta có a = 6.
Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 6, và b = 0 hoặc b = 5.
b. Để số 5a43b chia hết cho 2, 3 và 5, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 3, nên tổng các chữ số trong số đó phải chia hết cho 3. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 5 + a + 4 + 3 + 0 = 12 + a. Để 12 + a chia hết cho 3, ta có a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9.
- Nếu b = 5, thì tổng các chữ số là 5 + a + 4 + 3 + 5 = 17 + a. Để 17 + a chia hết cho 3, ta có a = 1 hoặc a = 4 hoặc a = 7.
Vậy, các giá trị thỏa mãn là a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9, và b = 0 hoặc b = 5.
c. Để số 735a2b chia hết cho 5 và 9, nhưng không chia hết cho 2, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 0 = 17 + a. Để 17 + a chia hết cho 9, ta có a = 7 hoặc a = 8.
- Nếu b = 5, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 5 = 22 + a. Để 22 + a chia hết cho 9, ta có a = 2 hoặc a = 5 hoặc a = 8.
Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 5 hoặc a = 7 hoặc a = 8, và b = 0 hoặc b = 5.
Bài 5: Để xác định xem tổng A có chia hết cho 8 hay không, ta cần tính tổng A và kiểm tra xem nó có chia hết cho 8 hay không.
a) A chia hết cho 2 (1)
A chia hết cho 5 (2)
Từ (1) và (2) =>A chia hết cho 10=> 23x5y chia hết cho 10 => y=0
A chia hết cho 9 => 23x50 chia hết cho 9 => 2+3+x+5+0 chia hết cho 9 => x= 8
Để 23x5y \(⋮\)2,5 thì y=0
Để 23x50 \(⋮\)9 thì 2+3+x+5+0 \(⋮\)9
\(\Rightarrow10+x⋮9\)
Vì x là chữ số nên x = 8
vậy x=8 và y=0
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
a) \(\overline {12x02y} \) chia hết cho 2 và 5 khi chữ số tận cùng của nó là 0.
=> y = 0
\(\overline {12x020} \) chia hết cho 3 khi tổng các chữ số của nó cũng chia hết cho 3.
Nên (1 + 2 + x + 0 + 2 + 0)\( \vdots \)3
=> (x + 5) \( \vdots \) 3 và \(0 \le x \le 9\)
=> x\( \in \) {1; 4; 7}
Vậy để \(\overline {12x02y} \) chia hết cho 2, 3 và cả 5 thì y = 0 và x \( \in \){1; 4; 7}.
b) \(\overline {413x2y} \) chia hết cho 5 mà không chia hết cho 2 khi chữ số tận cùng của nó là 5
=> y = 5
\(\overline {413x25} \)chia hết cho 9 khi tổng các chữ số của nó cũng chia hết cho 9
Nên (4 + 1 + 3 + x + 2 + 5) \( \vdots \)9
=> (x + 15) \( \vdots \)9 và \(0 \le x \le 9\)
=> x = 3.
Vậy \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2 thì x = 3 và y = 5.