Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
\(=\frac{-5x-5y-5z}{21}\)
\(=\frac{-5\left(x+y\right)-5z}{21}\)
\(=\frac{-5\left(-z\right)-5z}{21}\)
\(=\frac{5z-5z}{21}\)
\(=\frac{0}{21}\)
\(=0\)
1.
A=\(\frac{-5x+-5y+-5z}{21}=\frac{-5\left(x+y+z\right)}{21}=\frac{-5}{21}.x+y+z\)
A= -z+z=0
<p style="padding: 10000000000000000px;" class="alert success"></p>
A = \(\frac{-5x}{21}\)+ \(\frac{-5y}{21}\)+ \(\frac{-5x}{21}\)
= \(\frac{\left(-5x\right)+\left(-5y\right)+\left(-5x\right)}{21}\)
vì x + y là số dõi của z
=> x + y + z = 0
=> \(\frac{5.\left(x+y+z\right)}{21}\)
= \(\frac{-5}{21}\). 0 = 0
=> A = 0
hok tốt !
Thay -z=x+y vào biểu thức A ta có A=-5x/21+(-5y/21)+[5(x+y)/21] =>-5x/21 +(-5y/21)+(5x+5y)/21=>-5x/21+(-5y/21)+5x/21+5y/21 => A = 0
Theo đầu bài ta có:
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
\(=\frac{-5x+-5y+-5z}{21}\)
\(=\frac{-5\left(x+y+z\right)}{21}\)
\(=\frac{-5\left(-z+z\right)}{21}\)
\(=\frac{-5\cdot0}{21}\)
\(=\frac{0}{21}=0\)
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
=>\(A=\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}\)
=>\(A=\frac{\left(-5\right)\left(x+y+z\right)}{21}\)
=>\(A=\frac{\left(-5\right)\left(-z+z\right)}{21}\)
=>\(A=\frac{\left(-5\right).0}{21}\)
=>\(A=\frac{0}{21}\)
=>A=0
A=\(\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)=\(\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}\)vì x+y=z \(\Rightarrow\)x+y là số đối của z
\(\Rightarrow\)x+y+z=0
\(\Rightarrow\frac{-5}{21}.x+y+z=\frac{-5}{21}.0=0\)
\(\Rightarrow\)A=0
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5o}{21}=-\frac{5}{21}\left(x+y+o\right)\)
\(=-\frac{5}{21}\left(-o+o\right)=0\)
bài 1:rất dễ,nhân chéo sẽ giải đc
bài 2: x+y=-x
=>x+y+z=0
Ta có: \(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}=\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}=\frac{0}{21}=0\)
bài 1:
\(\frac{1}{2a^2+1}:x=2\)
\(\Leftrightarrow\frac{1}{2a^2+1}.\frac{1}{x}=2\)
\(\Leftrightarrow\frac{1}{\left(2a^2+1\right).x}=2\)
\(\Leftrightarrow x=\frac{1}{\frac{\left(2a^2+1\right)}{2}}=\frac{1}{2a^2+1}.\frac{1}{2}=\frac{1}{\left(2a^2+1\right).2}=\frac{1}{4a^2+2}\)