K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2020

Ta có: 

\(2n:\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+.....+\frac{1}{1+2+...+n}\right)=2020\)

<=> \(2n:\left(\frac{2}{2}+\frac{2}{3.2}+\frac{2}{4.3}+...+\frac{2}{\left(n+1\right).n}\right)=2020\)

<=> \(n:\left(1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=2020\)

<=> \(n:\left(1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=2020\)

<=> \(n:\left(1-\frac{1}{n+1}\right)=2020\)

<=> \(n:\frac{n}{n+1}=2020\)

<=> n + 1 = 2020

<=> n = 2019

23 tháng 2 2020

Bn lm đc chx

8 tháng 3 2020

chx ạ

26 tháng 9 2016

a) (5x +1)^2= 6^2/7^2

=> 5x+1= 6/7 hoặc -6/7 ( vì cả hai đều có mũ hai nên có thể bỏ đi - cái này mình giải thích cho bạn hỉu thui, đừng chép vào vở nhé)

 Đến đây thì bạn cứ tính theo cách tìm x thông thường, cuối cùng thì ra số âm nên không có kết quả x thuộc N

26 tháng 9 2016

Tiếc quá chưa học đến

sory bạn

cô lên